Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Толстова_анализ социол данных.doc
Скачиваний:
36
Добавлен:
31.08.2019
Размер:
5.13 Mб
Скачать

2.4. Связь типа "альтернатива-альтернатива"

2.4.1. Смысл локальной связи . Возможные подходы к ее изучению

Напомним (см. п.2.2.1), что под локальной связью мы понимаем связь между отдельными альтернативами рассматриваемых признаков. Можно ее понимать и более широко. Так, выше, при обсуждении прогнозных и информационных коэффициентов связи мы говорили о том, что знание какого-то одного значения Х может нам дать очень большую информацию об Y, а для другого значения Х аналогичная информация может быть мала. Это и означает, что для первого значения Х имеет место сильная локальная связь.

Сами термины “локальный” и “глобальный” применительно к пониманию связи между переменными, вероятно, впервые были использованы в [Чесноков, 1982].В п. 2.2.1 мы уже упоминали, что “локальному” подходу в этой работе отвечает понимание связи как некоторого отношения между двумя конкретными градациями а и b признаков Х и Y соответственно. В таком случае мы можем говорить о сильной связи, если из того, что для некоторого объекта первый признак принимает значение а, с большой вероятностью следует, что второй признак для того же объекта принимает значение b. И можно говорить о слабой связи, если аналогичная вероятность мала (еще раз напомним, что “глобальная” связь - это результат определенного “усреднения” подобных локальных связей).

Для изучения локальной связи можно использовать, например, коэффициенты Ф и Q. Для этого надо исходную частотную таблицу произвольной размерности привести к определенной четырехклеточной. Покажем на примере, как это делается. Рассмотрим частотную таблицу, выражающую зависимость между

Таблица 17.

Пример таблицы сопряженности

Профессия

Читаемая газета

Итого

УГ

МК

Независимая

Правда

Врач

5

2

13

8

28

Токарь

6

24

7

13

50

Учитель

9

0

1

0

10

Космонавт

2

1

4

5

12

Итого

22

27

25

26

100

профессией человека и читаемой им газетой (для простоты предполагаем, что каждый респондент может читать не более одной газеты). Предположим, что нас интересует локальная связь между свойством “быть учителем” и свойством “читать "Учительскую газету" (УГ)”. Упомянутая выше четырехклеточная таблица будет иметь вид:

Таблица 18.

Четырехклеточная таблица сопряженности, полученная из таблицы 17

Профессия

Читаемая газета

Маргиналы по строкам

УГ

Не УГ

Учитель

9

1

10

Не учитель

13

77

90

Маргиналы по столбцам

22

78

100

Представляется очевидным, что если мы далее будем использовать коэффициенты связи, предназначенные для анализа четырехклеточных таблиц, то как раз и измерим силу нашей локальной связи.