
- •1.Строение вещества.
- •1.Квантово-механическая модель атома. Состав атома. Волновые свойства электрона. Волновое уравнение и волновая функция. Атомная орбиталь, основные типы атомных орбиталей.
- •3. Принцип Паули. Электронная емкость атомной орбитали, энергетических подуровней и энергетических уровней.
- •4.Правила и порядок заполнения атомных орбиталей. Принцип наименьшей энергии, правило Клечковского. Электронная формула атома. Правило Хунда.
- •5.Строение многоэлектронных атомов. Электронная формула атома (пример). Валентные подуровни и валентные электроны. S-,p-, d-, f- элементы.
- •8.Ионная связь. Характеристика ионной связи и условие ее образования. Ненасыщаемость и не направленность ионной связи. Структура ионных соединений. Химическая формула ионного соединения.
- •9.Метод валентных связей. Характеристика ковалентной связи. Изменение энергии системы при образовании ковалентной связи. Обменный и донорно-акцепторный механизмы образования ковалентной связи.
- •10.Ковалентная связь. Обменный механизм образования ковалентной связи. Ковалентность. Образование ковалентных связей возбужденным атомом. Насыщаемость ковалентной связи.
- •11. Ковалентная связь. Донорно-акцепторный механизм образования ковалентной связи. Электронная структура частиц-доноров и частиц-акцепторов. Образование комплексов и агрегатов молекул.
- •12.Направлснность ковалентной связи. Сигма- и пи-связи. Кратные связи. Примеры молекул с кратными связями.
- •13.Гибридизация атомных орбиталей. Гибридизация s- и р-атомных орбиталей. Пространственное расположение гибридных атомных орбиталей при sp- гибридизации. Структура простейших молекул.
- •14. Полярность связей и молекул. Полярная и неполярная связь. Электрический момент диполя связи. Полярные и неполярные молекулы. Факторы, влияющие на полярность молекул.
- •16.Химическая связь в твердых телах. Понятие о зонной теории связи. Проводники, полупроводники и диэлектрики.
- •17.Силы межмолекулярного взаимодействия. Ориентационное, индукционное и дисперсионное взаимодействие. Водородная связь. Энергия межмолекулярного взаимодействия.
- •18. Комплексные соединения. Образование комплексов. Комплексообразователь, лиганды, координационное число, заряд комплекса. Внутренняя и внешняя сфера комплексного соединения.
- •20.Кристаллы. Классификация кристаллов по типу связей между частицами. Типичные свойства ионных, ковалентных, молекулярных и металлических кристаллов.
- •II.Общие закономерности химических процессов.
- •22.Катализ. Катализатор. Гомогенный и гетерогенный катализ. Энергия активации и ее изменение в каталитических процессах. Основные представления о теориях гомогенного и гетерогенного катализа.
- •23.Энергетические эффекты химических реакций. Первый закон термодинамики. Теплота реакции в изобарном и изохорном процессе. Теплота реакции в многостадийном процессе. Закон Гесса.
- •25.Энтропия. Энтропия как функция термодинамической вероятности состояния системы. Изменение энтропии при фазовых переходах. Определение (расчет) изменения энтропии в химическом процессе.
- •26. Энергия Гиббса. Термодинамический критерий самопроизвольного протекания процесса и условие равновесия. Методы расчета величин изменения энергии Гиббса в химической реакции.
- •27.Химическое равновесие. Термодинамическое и кинетическое условия химического равновесия. Константа химического равновесия. Расчет константы равновесия.
- •29.Фазовое равновесие. Фазовые состояния, фазовые переходы и фазовые равновесия. Диаграмма фазового состояния вещества.
- •30. Адсорбционное равновесие. Гомогенные и гетерогенные смеси веществ. Поверхностное натяжение. Адсорбция и десорбция, адсорбционное равновесие. Поверхностно-активные вещества.
- •III. Растворы и дисперсные системы.
- •32.Растворы. Состав растворов. Способы выражения концентрации растворов. Законы идеальных растворов.
- •33.Растворы. Состав растворов. Химическая теория растворов д.И.Менделеева. Термодинамика процесса растворения.
- •35.Ионные равновесия. Гомогенные и гетерогенные ионные равновесия. Константа диссоциации и произведение растворимости. Смещение ионных равновесий.
- •IV.Окислительно-восстановительные процессы.
- •47.Гальванический элемент. Анод и катод, анодный и катодный процессы. Уравнение электрохимического процесса в гальваническом элементе. Эдс и ее определение. Запись гальванического элемента.
13.Гибридизация атомных орбиталей. Гибридизация s- и р-атомных орбиталей. Пространственное расположение гибридных атомных орбиталей при sp- гибридизации. Структура простейших молекул.
При рассмотрении ковалентных химических связей нередко используют понятие о гибридизации орбиталей центрального атома - выравнивание их энергии и формы. Гибридизация является формальным приемом, применяемым для квантово-химического описания перестройки орбиталей в химических частицах по сравнению со свободными атомами. Сущность гибридизации атомных орбиталей состоит в том, что электрон вблизи ядра связанного атома характеризуется не отдельной атомной орбиталью, а комбинацией атомных орбиталей с одинаковым главным квантовым числом. Такая комбинация называется гибридной (гибридизованной) орбиталью. Как правило, гибридизация затрагивает лишь высшие и близкие по энергии атомные орбитали, занятые электронами.
sp3-гибридизация
происходит при смешивании одной s- и трех p-орбиталей. Возникает четыре одинаковые орбитали, расположенные относительно друг друга под тетраэдрическими углами 109°28’
sp2-гибридизация
происходит при смешивании одной s- и двух p-орбиталей . Образуется три гибридные орбитали с осями, расположенными в одной плоскости и направленными к вершинам треугольника под углом 120 градусов. Негибридная p-атомная орбиталь перпендикулярна плоскости и, как правило, участвует в образовании π-связей.
sp-гибридизация
происходит при смешивании одной s- и одной p-орбиталей. Образуется две равноценные sp-атомные орбитали, расположенные линейно под углом 180 градусов и направленные в разные стороны о ядра атома углерода. Две оставшиеся негибридные p-орбитали располагаются во взаимно перпендикулярных плоскостях.
Простейшие молекулы могут состоять из одного атома (например, молекулы благородных газов гелия, неона, аргона, криптона и ксенона). В отличие от молекул сортов атомов не так уж и много – около сотни.
14. Полярность связей и молекул. Полярная и неполярная связь. Электрический момент диполя связи. Полярные и неполярные молекулы. Факторы, влияющие на полярность молекул.
По распределению электронной плотности между связываемыми атомами ковалентная связь делится на неполярную и полярную. Неполярная связь образуется между одинаковыми атомами, полярная - между разными. Ковалентная полярная связь – это связь между атомами с помощью общих электронных пар, при которой общие электронные пары смещены к атому более электроотрицательного элемента. Если электронная плотность расположена симметрично между атомами, ковалентная связь называется неполярной. Если электронная плотность смещена в сторону одного из атомов, то ковалентная связь называется полярной. Полярность связи тем больше, чем больше разность электроотрицательностей атомов.
В любой нейтральной молекуле имеются центры тяжести положительных и отрицательных зарядов. Эти центры могут совпадать, т.е. находиться в одной точке, тогда молекула наз. неполярной, или не совпадать – и тогда молекула является полярной. Неполярными являются двухатомные молекулы, состоящие из одинаковых атомов, например, Н2 или СL2, поскольку электроны ковалентных связей в них равномерно распределены между двумя атомами. В молекуле, состоящей из двух различных атомов, например, H-CL, связывающие электроны сдвинуты к более электроотрицательному атому, в результате чего на атомах возникают эффективные электрические заряды +δ, -δ. Электрические заряды атомов в таких полярных молекулах намного меньше, чем элементарный электрический заряд. Таким образом, в полярной молекуле имеются 2 центра или 2 полюса зарядов, и возникло название такой молекулы - диполь. Электрическим моментом диполя связи наз. произведение абсолютного значения заряда электрона q на расстояние между центрами положительного и отрицательного зарядов или длину диполя l. Электрический момент диполя двухатомной молекулы = электрическому моменту диполя связи. Электрический момент диполя многоатомной молекулы, /т.е. как векторная величина/, = геометрической сумме электрических моментов диполей входящих в нее связей. Результат сложения зависит от структуры молекулы. По электрическим моментам молекул можно получить данные о структуре молекул. Чем сильнее различаются два атома одной связи по своей электроотрицательности, тем больше электрический момент диполя связи, тем полярнее связь.
Полярные молекулы, молекулы, обладающие постоянным дипольным моментом в отсутствие внешнего электрического поля. Дипольный момент присущ таким молекулам, у которых распределение электронного и ядерного зарядов не имеет центра симметрии. Обычно полярность отдельных фрагментов молекулы или хим. связей между двумя атомами (или большим числом атомов) определяется величиной соответствующего дипольного момента: чем он больше, тем сильнее полярность.
Под влиянием внеш. электрич. поля вещество поляризуется, т.е. в нем возникает дипольный момент единицы объема. У веществ, состоящих из П. м., поляризация обусловлена смещением электронной плотности под влиянием поля и ориентацией молекул в поле. Ориентации молекул препятствует тепловое движение, поэтому изучение зависимости поляризации от температуры позволяет определять дипольный момент молекул.
15. Понятие о методе молекулярных орбиталей. Атомная и молекулярная орбитали. Связывающие и разрыхляющие орбитали. Правила и порядок заполнения молекулярных орбиталей. Электронная формула молекулы. Порядок связи.
Метод молекулярных орбиталей исходит из того, что каждую молекулярную орбиталь представляют в виде алгебраической суммы (линейной комбинации) атомных орбиталей. Например, в молекуле водорода в образовании МО могут участвовать только 1s атомные орбитали двух атомов водорода, которые дают две МО, представляющие собой сумму и разность атомных орбиталей. При использовании метода молекулярных орбиталей считается, в отличие от метода валентных связей, что каждый электрон находится в поле всех ядер. При этом связь не обязательно образована парой электронов. Например, ион Н2+ состоит из двух протонов и одного электрона. Между двумя протонами действуют силы отталкивания, между каждым из протонов и электроном - силы притяжения. Химическая частица образуется лишь в том случае, если взаимное отталкивание протонов компенсируется их притяжением к электрону. Это возможно, если электрон расположен между ядрами - в области связывания. В противном случае силы отталкивания не компенсируются силами притяжения - говорят, что электрон находится в области антисвязывания, или разрыхления.
Молекулярные орбитали - волновые функции электрона в молекуле или другой многоатомной химической частице. Каждая молекулярная орбиталь (МО), как и атомная орбиталь (АО), может быть занята одним или двумя электронами. Состояние электрона в области связывания описывает связывающая молекулярная орбиталь, в области разрыхления - разрыхляющая молекулярная орбиталь. Распределение электронов по молекулярным орбиталям происходит по тем же правилам, что и распределение электронов по атомным орбиталям в изолированном атоме. Молекулярные орбитали образуются при определенных комбинациях атомных орбиталей. Их число, энергию и форму можно вывести исходя из числа, энергии и формы орбителей атомов, составляющих молекулу. Молекулярная орбиталь - область наиболее вероятного пребывания электрона в электрическом поле двух (или более) ядер атомов, составляющих молекулу.
Атомная орбиталь (АО) - область наиболее вероятного пребывания электрона (электронное облако) в электрическом поле ядра атома.
Заполнение молекулярных орбиталей происходит в соответствии с принципом наименьшей энергии и принципом Паули, по два электрона размещаются на а- и по четыре на вырожденных я- и 8-орбиталях. Порядок, в котором возрастают энергии МО, устанавливается при исследовании молекулярных спектров и другими экспериментальными методами, а также при помощи квантовомеханических расчетов.
Для изображения электронного строения молекул, ионов или радикалов используются электронные формулы. При написании электронной формулы должно выполняться правило октета, согласно которому атом, участвуя в образовании химической связи (отдавая или принимая электроны), стремится приобрести электронную конфигурацию инертного газа - октет (восемь) валентных электронов. Исключение составляет атом водорода, для которого устойчивой является конфигурация гелия, т.е. 2 валентных электрона.
Чем выше кратность связи, тем короче межатомное расстояние. Связь может быть одинарной либо кратной (двойной, тройной и т.д.).