Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
297753.rtf
Скачиваний:
41
Добавлен:
28.08.2019
Размер:
14.58 Mб
Скачать

Глава 2 Методы решения задачи о рюкзаке

2.1 Классификация методов

На практике очень часто возникают NP-полные задачи, задач о рюкзаке – одна из них . Конечно надежд, на то что для них найдется полиномиальный алгоритм практически нет, но из этого не следует что с задачей нельзя ничего сделать. Во первых, очень часто удается построить полиномиальный алгоритм для NP – полной задачи, конечно он даст приближенное, а не точное решение, но зато будет работать за реальное время. Во вторых, данные могут быть таковы, что экспоненциальный алгоритм, например переборный сможет работать на них разумное время. К точным методам относятся: Полный перебор, метод ветвей и границ, ДП – программирование. К приближенным: Жадные алгоритмы. Полный перебор – перебор всех вариантов (всех состояний) –малоэффективный, но точный метод. Метод ветвей и границ – по сути сокращение полного перебора с отсечением заведомо “плохих” решений. ДП – алгоритм, основанный на принципе оптимальности Беллмана. Жадный алгоритм – основан на нахождении относительно хорошего и “дешевого” решения.

2.2 Динамическое программирование

В основе метода динамического программирования лежит принцип оптимальности Беллмана:”Каково бы ни было состояние системы перед очередным шагом, надо выбирать управление на этом шаге так, чтобы выигрыш на этом шаге плюс оптимальный выигрыш на всех последующих шагах был оптимальным”. Проще говоря оптимальное решение на i шаге находится исходя из найденных ранее оптимальных решений на предшествующих шагах. Из этого следует, что для того чтобы найти оптимальное решение на последнем шаге надо сначала найти оптимальное решения для первого, затем для второго и так далее пока не пройдем все шаги до последнего.

Имеется набор из N предметов. Пусть MaxW - объем рюкзака, Pi – стоимость i-го предмета, Wi – вес i-го предмета. Value [W, i] – максимальная сумма, которую надо найти. Суть метода динамического программирования – на каждом шаге по весу 1<Wi<W находим максимальную загрузку Value[Wi, i], для веса Wi. Допустим мы уже нашли Value[1..W, 1..i-1], то есть для веса меньше либо равного W и с предметами, взятыми из 1..N-1. Рассмотрим предмет N, если его вес WN меньше W проверим стоит ли его брать.

Если его взять то вес станет W-Wi , тогда Value[W, i] = Value[W – Wi , i-1] + Pi (для Value[W – Wi , i-1]) решение уже найдено остается только прибавить Pi.

Если его не брать то вес останется тем же и Value[W , i] = Value[W – Wi , i-1]. =Из двух вариантов выбирается тот, который дает наибольший результат. Рассмотрим алгоритм подробнее.

Рис 1.1

-

Рис 1.2

Рис 1.3

Динамическое программирование для задачи о рюкзаке дает точное решение, причем одновременно вычисляются решения для всех размеров рюкзака от 1 до MaxW, но какой ценой? Для хранения таблицы стоимости и запоминания того, брался каждый предмет или нет, требуется порядка O(N*MaxW) памяти, временная сложность равна O(N*MaxW) ;

Опишем основную логику решения: {Загружаем рюкзак если его вместимость = Weight} for Weight:=1 to MaxW do begin

for i:=1 to N do {берем предметы с 1 по N}

{если вес предмета больше Weight}

{или предыдущий набор лучше выбираемого}

if (W[i]>Weight) or (Value[Weight, i-1] >=

Value[Weight-W[i], i-1]+P[i]) then begin

{Тогда берем предыдущий набор}

Value[Weight, i]:=Value[Weight, i-1];

{говорим что вещь i не взята}

Take [Weight, i]:= false;

End

{иначе добавляем к предыдущему набору текущий

предмет}

Else begin

Value [Weight, i]:=Value [Weight - W[i], i-1]

+P[i];

{говорим что вещь i взята}

Take [Weight, i]:= true;

End;

End;

Как было сказано ранее, алгоритм динамического программирования для ‘рюкзака’ дает точное решение путем использования дополнительной памяти O(N*MaxW), временная сложность алгоритма так же будет порядка O(N*MaxW).