
- •Трансформаторы
- •1.1. Основные теоретические сведения
- •Режим холостого хода.
- •1.3. Режим короткого замыкания
- •1.4.Режим нагрузки
- •1.5. Коэффициент полезного действия трансформатора.
- •1.6. Векторные диаграммы трансформатора
- •1.7. Трёхфазные трансформаторы.
- •1.8. Параллельная работа трансформаторов
- •2. Асинхронные двигатели
- •2.1. Общие положения
- •2.2. Рабочие характеристики трехфазного асинхронного двигателя с короткозамкнутым ротором
- •2.3. Построение круговой диаграммы
- •2.4. Трехфазные асинхронные двигатели с фазным ротором
- •2.4.1. Холостой ход
- •2.4.2. Опыт короткого замыкания
- •2.4.3. Рабочие характеристики ад
- •2.5. Пуск асинхронных двигателей
- •2.5.1. Общие положения
- •2.5.2 Прямой пуск асинхронного двигателя с короткозамкнутым ротором
- •2.5.3. Пуск асинхронного двигателя с короткозамкнутым ротором переключением обмотки статора со звезды на треугольник
- •2.5.4. Реакторный пуск асинхронного двигателя с короткозамкнутым ротором
- •2.5.5. Автотрансформаторный пуск асинхронного двигателя с короткозамкнутым ротором
- •2.5.6. Пуск асинхронного двигателя с короткозамкнутым ротором при изменении частоты питающей сети f1
- •Синхронные машины
- •3.1. Общие положения
- •3.2. Характеристики синхронного генератора
- •3.2.1. Характеристика холостого хода синхронного генератора
- •При синусоидальном поле коэффициент формы эдс определяется по формуле:
- •3.2.2. Характеристика короткого замыкания синхронного генератора
- •3.3. Внешние характеристики синхронного генератора
- •3.4. Регулировочная характеристика синхронного генератора
- •3.5. Нагрузочная характеристика синхронного генератора
- •Рассмотренные характеристики дают возможность судить об основных электромагнитных показателях машины. Однако о кпд и распределении тепловых полей по ним судить нельзя.
- •3.6 Потери и кпд синхронного генератора
- •Сопротивление обмотки возбуждения без учета вытеснения тока определяют по формуле и приводят к расчетной температуре:
- •Суммарные потери в синхронном генераторе:
- •Характеристику холостого хода принято строить в относительных единицах:
- •За характеристику холостого хода принимают среднюю линию, проведенную между восходящей и нисходящей ветвями характеристики.
- •3.7 Параллельная работа синхронных генераторов
- •Таким образом, степень возбуждения синхронного генератора влияет только на реактивную составляющую тока статора. Что же касается активной составляющей тока, то она остается неизменной.
- •Синхронные двигатели
- •4.1 Пуск синхронного двигателя
- •4.2 Рабочие характеристики.
- •4.3 Сравнительная оценка синхронных двигателей с асинхронными
- •5. Генераторы постоянного тока
- •5.1.Основные теоретические сведения
- •В зависимости от конкретной схемы генератора часть сопротивлений в будет отсутствовать.
- •5.2 Характеристики генератора постоянного тока параллельного возбуждения
- •5.2.1. Характеристика самовозбуждения
- •5.3. Характеристика холостого хода генератора постоянного тока параллельного возбуждения
- •5.4. Характеристика короткого замыкания генератора постоянного тока параллельного возбуждения
- •5.5. Нагрузочная характеристика генератора постоянного тока параллельного возбуждения
- •Нагрузочная характеристика располагается ниже характеристики холостого хода из-за падения напряжения в цепи якоря и размагничивающего действия реакции якоря, которые уменьшают поток и эдс машины.
- •5.6. Внешняя характеристика генератора постоянного тока параллельного возбуждения
- •5.7 Регулировочная характеристика генератора постоянного тока параллельного возбуждения
- •6. Двигатели постоянного тока
- •6.1. Общие положения
- •6.2. Опыт холостого хода
- •6.3. Опыт короткого замыкания
- •6.4. Коэффициент полезного действия
- •Коэффициент полезного действия электрической машины можно определять:
- •6.5. Принцип действия двигателя постоянного тока
- •6.6. Пуск двигателя
- •6.7 Характеристики двигателей постоянного тока параллельного и независимого возбуждения
- •6.8. Устойчивость двигателя
4.2 Рабочие характеристики.
Рабочие характеристики синхронного двигателя представляют собой зависимости тока статора Iа, электрической мощности P1, поступающей в обмотку статора, КПД и cosφ от отдаваемой механической мощности P2 при Uс=const, fс=const и Iв=const.
Рисунок 4.7 - Рабочие характеристики синхронного двигателя.
Часто эти характеристики строят в относительных единицах. Поскольку частота вращения синхронного двигателя постоянна, зависимость n2=f(Р2) обычно не приводится.
Зависимость P1=f(P2) имеет характер, близкий к линейному.
(4.10)
Мощность Р2 является полезной мощностью синхронного двигателя:
(4.11)
Полезный момент на валу синхронного двигателя:
(4.12)
Ток двигателя при холостом ходе является практически реактивным. По мере роста нагрузки возрастает активная составляющая тока, в связи с чем зависимость тока Iа от мощности Р2 является нелинейной.
(4.13)
Кривая ŋ=f(P2) имеет характер, общий для всех электрических машин.
(4.14)
Синхронные двигатели могут работать при cosφ=1, но обычно их рассчитывают на работу при номинальной нагрузке с опережающим током и cosφном=O,9 - 0,8. В этом случае улучшается суммарный cosφ сети, так как создаваемая ими опережающая реактивная составляющая тока Iа компенсирует отстающую реактивную составляющую тока асинхронных двигателей.
Зависимость cosφ=f(P2) при работе машин с перевозбуждением имеет максимум в области Р2>Рном. При снижении Р2 значение cosφ уменьшается, а отдаваемая в сеть реактивная мощность возрастает.
4.3 Сравнительная оценка синхронных двигателей с асинхронными
Синхронные двигатели имеют следующие достоинства:
а) возможность работы при cosφ=1; это приводит к улучшению cosφ сети, а также к сокращению размеров двигателя, так как его ток меньше тока асинхронного двигателя той же мощности. При работе с опережающим током он является генератором реактивной мощности, поступающей в асинхронные двигатели, что снижает потребление этой мощности от генераторов электростанций;
б) меньшую чувствительность к колебаниям напряжения, так как их максимальный момент пропорционален напряжению в первой степени (а не квадрату напряжения);
в) строгое постоянство частоты вращения независимо от механической нагрузки на валу.
Недостатками синхронных двигателей являются:
а) сложность конструкции;
б) сравнительная сложность пуска;
в) трудности регулирования частоты вращения, которое возможно только путем изменения частоты питающего напряжения.
5. Генераторы постоянного тока
5.1.Основные теоретические сведения
Классификация генераторов постоянного тока производится по способу их возбуждения. Они подразделяются на генераторы с независимым возбуждением и с самовозбуждением.
У генераторов с самовозбуждением обмотка возбуждения получает питание от собственного якоря. В зависимости от способа ее включения генераторы с самовозбуждением подразделяются на генераторы с параллельным, последовательным и смешанным возбуждением.
Согласно ГОСТ 183-74 для машин постоянного тока принято следующее обозначение выводов обмоток: обмотки якоря Я1-Я2, независимой обмотки возбуждения Н1-Н2, параллельной обмотки возбуждения Ш1-Ш2, последовательной обмотки возбуждения С1-С2, обмотки дополнительных полюсов Д1-Д2, компенсационной обмотки К1-К2. Цифра 1 обозначает начало, а цифра 2 — конец обмотки.
По конструктивному выполнению машина постоянного тока с параллельным возбуждением подобна машине с независимым возбуждением, у которой обмотка якоря расположена на роторе, а обмотка возбуждения — на статоре.
Основные соотношения, характеризующие работу машины в качестве генератора, можно представить в виде приведенных ниже уравнений. Эти уравнения справедливы для всех генераторов независимо от способа их возбуждения.
Напряжение на выводах генератора всегда будет меньше наводимой в обмотке якоря ЭДС Е на значение падения напряжения:
(5.1)
Падение напряжения в цепи якоря состоит
из двух составляющих:
— падения напряжения в обмотках,
— падения напряжения в щеточном контакте.
Сопротивление
включает в себя сопротивления обмотки
якоря и всех последовательно соединенных
с ней обмоток. В общем случае:
(5.2)
где rа, rД, rс, rк — сопротивления обмоток якоря, дополнительных полюсов, последовательной (сериесной) и компенсационной.