
- •Трансформаторы
- •1.1. Основные теоретические сведения
- •Режим холостого хода.
- •1.3. Режим короткого замыкания
- •1.4.Режим нагрузки
- •1.5. Коэффициент полезного действия трансформатора.
- •1.6. Векторные диаграммы трансформатора
- •1.7. Трёхфазные трансформаторы.
- •1.8. Параллельная работа трансформаторов
- •2. Асинхронные двигатели
- •2.1. Общие положения
- •2.2. Рабочие характеристики трехфазного асинхронного двигателя с короткозамкнутым ротором
- •2.3. Построение круговой диаграммы
- •2.4. Трехфазные асинхронные двигатели с фазным ротором
- •2.4.1. Холостой ход
- •2.4.2. Опыт короткого замыкания
- •2.4.3. Рабочие характеристики ад
- •2.5. Пуск асинхронных двигателей
- •2.5.1. Общие положения
- •2.5.2 Прямой пуск асинхронного двигателя с короткозамкнутым ротором
- •2.5.3. Пуск асинхронного двигателя с короткозамкнутым ротором переключением обмотки статора со звезды на треугольник
- •2.5.4. Реакторный пуск асинхронного двигателя с короткозамкнутым ротором
- •2.5.5. Автотрансформаторный пуск асинхронного двигателя с короткозамкнутым ротором
- •2.5.6. Пуск асинхронного двигателя с короткозамкнутым ротором при изменении частоты питающей сети f1
- •Синхронные машины
- •3.1. Общие положения
- •3.2. Характеристики синхронного генератора
- •3.2.1. Характеристика холостого хода синхронного генератора
- •При синусоидальном поле коэффициент формы эдс определяется по формуле:
- •3.2.2. Характеристика короткого замыкания синхронного генератора
- •3.3. Внешние характеристики синхронного генератора
- •3.4. Регулировочная характеристика синхронного генератора
- •3.5. Нагрузочная характеристика синхронного генератора
- •Рассмотренные характеристики дают возможность судить об основных электромагнитных показателях машины. Однако о кпд и распределении тепловых полей по ним судить нельзя.
- •3.6 Потери и кпд синхронного генератора
- •Сопротивление обмотки возбуждения без учета вытеснения тока определяют по формуле и приводят к расчетной температуре:
- •Суммарные потери в синхронном генераторе:
- •Характеристику холостого хода принято строить в относительных единицах:
- •За характеристику холостого хода принимают среднюю линию, проведенную между восходящей и нисходящей ветвями характеристики.
- •3.7 Параллельная работа синхронных генераторов
- •Таким образом, степень возбуждения синхронного генератора влияет только на реактивную составляющую тока статора. Что же касается активной составляющей тока, то она остается неизменной.
- •Синхронные двигатели
- •4.1 Пуск синхронного двигателя
- •4.2 Рабочие характеристики.
- •4.3 Сравнительная оценка синхронных двигателей с асинхронными
- •5. Генераторы постоянного тока
- •5.1.Основные теоретические сведения
- •В зависимости от конкретной схемы генератора часть сопротивлений в будет отсутствовать.
- •5.2 Характеристики генератора постоянного тока параллельного возбуждения
- •5.2.1. Характеристика самовозбуждения
- •5.3. Характеристика холостого хода генератора постоянного тока параллельного возбуждения
- •5.4. Характеристика короткого замыкания генератора постоянного тока параллельного возбуждения
- •5.5. Нагрузочная характеристика генератора постоянного тока параллельного возбуждения
- •Нагрузочная характеристика располагается ниже характеристики холостого хода из-за падения напряжения в цепи якоря и размагничивающего действия реакции якоря, которые уменьшают поток и эдс машины.
- •5.6. Внешняя характеристика генератора постоянного тока параллельного возбуждения
- •5.7 Регулировочная характеристика генератора постоянного тока параллельного возбуждения
- •6. Двигатели постоянного тока
- •6.1. Общие положения
- •6.2. Опыт холостого хода
- •6.3. Опыт короткого замыкания
- •6.4. Коэффициент полезного действия
- •Коэффициент полезного действия электрической машины можно определять:
- •6.5. Принцип действия двигателя постоянного тока
- •6.6. Пуск двигателя
- •6.7 Характеристики двигателей постоянного тока параллельного и независимого возбуждения
- •6.8. Устойчивость двигателя
2.5.4. Реакторный пуск асинхронного двигателя с короткозамкнутым ротором
Более универсальным является способ пуска понижением подводимого к асинхронному двигателю с короткозамкнутым ротором напряжения посредством реакторов (реактивных катушек — дросселей).
Реакторный пуск осуществляется следующим образом. Сначала двигатель получает питание через трехфазный реактор (реактивную или индуктивную катушку), сопротивление которого ограничивает величину пускового тока. При этом ток из сети поступает в обмотку статора через реакторы, на которых происходит падение напряжения за счет индуктивного сопротивление реактора. В результате на обмотку статора подается пониженное напряжение. По достижении нормальной частоты вращения включается выключатель, который шунтирует реактор, в результате чего на двигатель подается нормальное напряжение сети.
Пусковые реакторы строятся обычно с ферромагнитным сердечником и рассчитываются по нагреву только на кратковременную работу, что позволяет снизить их вес и стоимость. Для весьма мощных двигателей применяются также реакторы без ферромагнитного сердечника, с обмотками, укрепленными на бетонном каркасе.
Если составляющие сопротивления короткого замыкания двигателя равны rк и xк ,то начальный пусковой ток при прямом пуске определяется по формуле:
(2.31)
При реакторном пуске, пренебрегая активным сопротивлением реактора начальный пусковой ток определяется по формуле:
(2.32)
Следовательно, при реакторном пуске
начальный пусковой ток уменьшается в
раз.
Во столько же раз уменьшается и напряжение
на зажимах двигателя в начальный момент
пуска. Начальный пусковой момент при
реакторном пуске уменьшается по сравнению
с моментом при прямом пуске в
раз.
Недостаток этого способа пуска состоит в том, что уменьшение напряжения сопровождается существенным уменьшением пускового момента.
2.5.5. Автотрансформаторный пуск асинхронного двигателя с короткозамкнутым ротором
Автотрансформаторный пуск осуществляется в следующем порядке. Сначала через автотрансформатор на статор асинхронного двигателя с короткозамкнутым ротором подается пониженное напряжение. При этом пусковой ток асинхронного двигателя с короткозамкнутым ротором, измеренный на выходе автотрансформатора, уменьшается в К раз, где К — коэффициент трансформации автотрансформатора. Что же касается тока на входе автотрансформатора, то он уменьшается в К2 раз по сравнению с пусковым током при прямом включении двигателя в сеть. Дело в том, что в понижающем автотрансформаторе первичный ток меньше вторичного в К раз и поэтому уменьшение пускового тока при автотрансформаторном пуске составляет К2 раз.
Таким образом, при автотрансформаторном пуске момент и ток асинхронного двигателя с короткозамкнутым ротором уменьшаются в одинаковое число раз.
После достижения ротора двигателя определенной частоты вращения выключатель отключается, и двигатель получает питание через часть обмотки автотрансформатора, который в этом случае работает как реактор. Затем включается следующий выключатель, в результате чего двигатель получает полное напряжение.
Пусковые автотрансформаторы рассчитываются на кратковременную работу. Согласно ГОСТ 3211—46, пусковые автотрансформаторы должны иметь ответвления, соответствующие величинам вторичного напряжения 45, 36 и 27%. В каждом конкретном случае выбирается подходящая ступень напряжения.
Как и предыдущие способы пуска при пониженном напряжении, автотрансформаторный способ пуска сопровождается уменьшением пускового момента, так как значение последнего прямо пропорционально квадрату напряжения. С точки зрения уменьшения пускового тока автотрансформаторный способ пуска лучше реакторного, но некоторая сложность пусковой операции и повышенная стоимость пусковой аппаратуры (понижающий автотрансформатор и переключающая аппаратура) несколько ограничивают применение этого способа пуска асинхронных двигателей с короткозамкнутым ротором.