
- •Лекция № 1 Взаимозаменяемость. Допуски и посадки
- •Термины и определения
- •Лекция №2 Допуски и посадки (продолжение)
- •2.1. Построение полей допусков
- •2.2. Основные понятия о посадках
- •2.3. Расчет предельных размеров деталей Метод «максимум – минимум».
- •Средний зазор:
- •Средний натяг:
- •2.4. Нанесение размеров с обозначением предельных отклонений или посадок
- •Лекция №3 Допуски и посадки (продолжение)
- •3.1. Вероятностный расчет полей допусков деталей и соединений
- •3.2. Расчет посадок с учетом температурной деформации
- •Лекция №4 Расчет размерных цепей
- •4.1 Основные понятия, термины и определения
- •4.1.1. Размерная цепь и ее звенья
- •4.1.2. Исходные и составляющие звенья
- •4.2. Основные формулы для расчета размерных цепей
- •4.3. Проектировочный расчет размерных цепей Расчет может быть выполнен двумя способами: способом равных допусков и способом одного квалитета (равноточных допусков).
- •4.3.1. Решение задачи проектировочного расчета способом равных допусков
- •4.3.2. Решение задачи проектировочного расчета способом одного квалитета
- •Лекция № 5
- •5.Отклонения формы, расположения и шероховатость поверхностей.
- •5.1. Шероховатость поверхностей.
- •5.2.1 Волнистость поверхности.
- •5.2.Отклонения формы и расположения поверхностей.
- •5.2.1.Отклонения формы
- •5.2.2. Отклонения расположения поверхностей.
- •Лекция №5
- •5.1. Выбор системы посадок
- •5.2. Рекомендации по выбору квалитета
- •5.3.1. Посадки с зазором
- •5.3.2. Переходные посадки
- •5.3.3. Прессовые посадки
- •Лекция № 6 Элементы приборных устройств. Валы и опоры
- •6.1 Общие сведения о валах, осях и опорах
- •6.2 Расчеты валов и осей
- •6.2.1. Расчеты на прочность
- •6.2.2. Расчет вала на крутильную прочность
- •Лекция №7 Валы и опоры (продолжение)
- •7.1 Расчет валов (продолжение)
- •7.1.1 Расчет вала на изгибную прочность
- •7.1.2 Расчет на крутильную жесткость
- •7.1.3 Расчет на изгибную жесткость
- •7.2. Опоры
- •7.2.1 Классификация.
- •7.2.2. Подшипники качения
- •Лекция №8 Шарикоподшипники
- •8.1 Шариковые подшипники качения
- •8.1.1 Конструкция
- •Лекция № 9 Подшипники
- •9.1 Понятие грузоподъемности стандартных подшипников
- •9.2 Грузоподъемность подшипников качения
- •9.3 Выбор подшипников по статической грузоподъемности
- •9.4 Выбор подшипника по динамической грузоподъемности
- •Лекция № 10
- •10.1 Трение в подшипнике качения
- •12.3. Посадки колец подшипника качения.
- •Лекция №11.
- •11.1 Подшипники скольжения.
- •11.1.1 Цилиндрические подшипники скольжения.
- •11.2 Основные параметры цилиндрических подшипников скольжения
- •11.2.1 Расчет подшипника скольжения
- •11.3 Момент трения подшипников скольжения
- •11.3.1 Расчет радиального момента трения.
- •11.3.2 Расчет осевого момента трения
- •Лекция № 12
- •12.1 Механические передачи.
- •12.2 Классификация по признакам
- •12.4. Силовое исследование передач
- •12.5. Динамические исследования передач
- •Лекция №13
- •13.1. Многоступенчатые зубчатые передачи. Основные понятия.
- •13.2. Классификация многоступенчатых зубчатых передач.
- •13.3. Виды передач в редукторе
- •13.4. Расчёт электромеханического привода.
- •13.4.1. Общие сведения об электромеханических приводах.
- •Лекция №14
- •14.1. Структурная схема нерегулируемого привода
- •14.2 Структурная схема регулируемого привода
- •Параметры регулируемых приводов:
- •14.3. Критерии работоспособности.
- •14.4. Основные характеристики и параметры приборных электродвигателей
- •1. Механическая характеристика.
- •2. Номинальная частота вращения nном и частота вращения холостого хода nхх. (ном ,XX).
- •14.6. Выбор двигателя по пусковому моменту
- •Лекция № 15 зубчатые передачи
- •15.1. Классификация.
- •По форме колёс и расположению геометрических осей
- •15.2. Основные понятия.
- •15.3. Основные параметры.
- •15.4. Основная теорема зацепления.
- •15.5. Общие требования к профилям зубьев.
- •Лекция № 16
- •16.1. Цилиндрическая эвольвентная зубчатая передача
- •16.2. Основные геометрические параметры эвольвентного цилиндрического зубчатого колеса
- •16.3. Виды зубчатых колёс в зависимости от толщины зуба по делительной окружности
- •1 6.4. Параметры при построении контакта эвольвентных профилей двух колес в зацеплении
- •Лекция № 17
- •17.1. Выбор участка эвольвенты для профиля зуба колеса
- •17.2. Элементы и параметры двух нулевых колёс эвольвентного профиля
- •17.3. Основные свойства эвольвентного зацепления.
- •Лекция № 18
- •18.1. Определение минимального числа зубьев колеса
- •18.2. Коррегирование эвольвентного зацепления
- •Лекция № 19 Расчёт зубчатых колёс на прочность
- •19.1 Виды повреждений зубьев.
- •Поломка зубьев при статических и динамических перегрузках.
- •Выкрашивание поверхности зубьев.
- •19.2. Силовые соотношения в прямозубых эвольвентных зубчатых передачах
- •19.3 Расчёт зубчатых передач на изгиб зубьев
- •19.4. Расчёт зубчатых колёс на контактную прочность.
- •19.5. Эвольвентные зубчатые передачи с внутренним зацеплением зубьев.
- •Лекция №20 Упругие элементы
- •20.1. Основные определения
- •20.2. Материалы упругих элементов
- •20.3. Основные параметры стержневых упругих элементов
- •Упругие элементы (продолжение)
- •21.2. Формулы для расчета геометрических параметров винтовой цилиндрической пружины
- •21.3. Пружины растяжения с начальным натяжением
- •21.4. Устойчивость пружин сжатия
- •21.5. Упругие несовершенства
- •Лекция №22 Плоские пружины
- •22.1. Формулы для определения геометрических параметров
- •22.2. Термобиметаллические пружины
- •22.2.1. Основные определения
- •22.2.2. Характеристики тб пружин
- •22.3. Маркировка пружин
- •Лекция № 23 червячная передача
- •23.1. Передаточное отношение червячной передачи
- •23.2. Геометрические и кинематические соотношения в червячной передаче
- •24.1. Скорость скольжения профилей зубьев в червячной передаче
- •24.2. Усилия в зацеплении червячной передачи
- •Передача «винт-гайка».
- •26.1. Кинематические и силовые соотношения в передаче
- •Лекция № 22 Планетарные передачи.
- •22.1. Определение по плану скоростей.
- •22.2. Определение i0 методом обращенного движения
- •Лекция № 27 Направляющие прямолинейного движения
- •Лекция №28 Муфты
- •28.1. Соединительные муфты
- •28.1. Втулочная муфта
- •28.2.Пальцевая (поводковая) муфта
- •28.3.Эластичные пальцевые муфты
- •Лекция№29 Предохранительные муфты
- •29.1.Место установки предохранительной муфты
- •29.3.Предохранительная фрикционная муфта
- •29.4.Кулачковая предохранительная муфта
- •29.2.Шариковая предохранительная муфта
- •28.4.Упругая муфта с винтовыми пружинами сжатия
- •Лекция№30 Потенциометры
- •30.1. Характеристики потенциометра
- •30.4.Конструкция
- •30.2. Расчёт потенциометров
- •30.3. Расчёт функционального потенциометра.
- •Лекция №31 Кулачковые механизмы
- •31.1. Основные сведения
- •31.2 Кинематика кулачковых передач
- •31.3. Силы в кулачковых передачах
- •31. 4. Программные механизмы
Лекция №4 Расчет размерных цепей
4.1 Основные понятия, термины и определения
4.1.1. Размерная цепь и ее звенья
Размерной цепью называется совокупность взаимосвязанных размеров, образующих замкнутый контур и определяющих взаимное положение поверхностей (или осей) одной или нескольких деталей. Размеры, входящие в размерную цепь, не могут назначаться независимо, т. е. числовое значение, по крайней мере, одного из размеров цепи и его точность определяются остальными номинальными размерами.
Размерная цепь состоит из отдельных звеньев. Звеном называется каждый из размеров, образующих размерную цепь. Звеньями размерной цепи могут быть линейные или угловые параметры: диаметры отверстий или валов; межосевые расстояния; отклонения, определяемые неидеальностью формы и расположения поверхностей и т. п.
4.1.2. Исходные и составляющие звенья
На стадии проектирования ПУ при разработке чертежей общего вида исходными размерами (звеньями) обычно являются осевые зазоры, к которым предъявляются основные требования по точности, определяющие качество ПУ в соответствии с техническими требованиями, условиями и стандартами.
В процессе сборки ПУ, в соответствии со сборочным чертежом, исходный размер получается, обычно, последним, замыкая размерную цепь. В этом случае такой размер называется замыкающим, представляя собой результат сборки деталей (звеньев размерной цепи).
Составляющими звеньями размерной цепи называются все остальные звенья. Составляющие звенья размерной цепи в зависимости от их влияния на замыкающее (исходное) звено подразделяют на увеличивающие и уменьшающие звенья.
Увеличивающие размеры (звенья) – размеры, с увеличением которых замыкающий размер увеличивается.
Уменьшающие размеры (звенья) – размеры, с увеличением которых замыкающий размер уменьшается.
При выполнении студентами домашних заданий, курсовых работ и проектов наиболее часто, из перечисленных в классификации , применяют три метода достижения точности исходного звена:
1) метод полной взаимозаменяемости, при котором учитываются только предельные отклонения составляющих звеньев. Иначе этот метод называется методом расчета «максимум-минимум»;
2) вероятностный метод, при котором учитываются законы рассеяния размеров деталей и случайный характер их сочетания в сборке;
3) метод регулирования, основанный на применении регуляторов, компенсирующих значительные отклонения замыкающих размеров от заданных значений.
Второй и третий методы относятся к методу неполной взаимозаменяемости
Метод «максимум-минимум»
Детали соединяются на этапе сборки без пригонки, регулирования и подбора. При любом сочетании размеров деталей, изготовленных в пределах расчетных допусков, значения замыкающего звена не выходят за установленные пределы.
Преимущества метода – сборка без пригонки, регулирования и подбора.
Недостатки метода – допуски составляющих звеньев получаются меньше, чем при расчетов остальными методами, это повышает точность, но может оказаться неэкономичным в случае серийного и массового производства.
Область применения – в индивидуальном и мелкосерийном производстве, которым присуще назначение малых величин допуска на исходное звено при небольшом числе составляющих звеньев размерной цепи.
Пример
конструкции, имеющей взаимосвязанные
размеры (трехзвенная размерная цепь).
A2 – замыкающий размер
A1 – увеличивающий размер
A3 – уменьшающий размер
Простейшая размерная цепь: вал в отверстии.
Номинально: D=d, ∆=0.
Предельные отклонения для замыкающего размера (зазора) могут быть заданы по разному:
например, как отклонение в микрометрах:
или
как нулевой номинальный размер с
указанием предельных отклонений в
миллиметрах:
Трехзвенная размерная цепь – все увеличивающие размеры сводятся к одному увеличивающему, все уменьшающие размеры сводятся к одному уменьшаюшему.