- •Основные газовые законы. Определение молекулярных масс газообразных веществ.
- •2. Основные стехиометрические законы.
- •3. Понятие о химическом эквиваленте и эквивалентной массе простых и сложных веществ. Закон химических эквивалентов.
- •4. Волновые свойства электрона. Квантовые числа, s-,p-,d-,f-состояния электрона. Электронные орбитали.
- •5. Принцип Паули. Емкость энергетических уровней и подуровней атомов элементов.
- •6. Связь периодического закона со строением электронных оболочек атомов. Правило Клечковского. Энергетические ячейки. Правило Гунда.
- •7. Периодический закон д.И.Менделеева и периодическая система элементов: ряды, периоды, подгруппы, порядковый номер.
- •8. Периодическое изменение свойств химических элементов. Радиус атомов, сродство к электрону, энергия ионизации, электроотрицательность.
- •9. Образование химической связи. Энергия связи и длина связи.
- •10. Ковалентная (атомная) связь. Метод валентных связей. Возбужденные состояния атомов. Валентность.
- •11. Направленность ковалентной связи. Сигма и п-связи. Гибридизация атомных орбиталей.
- •12. Ионная (электронная) связь.
- •13. Полярная связь. Полярность молекул и их дипольный момент.
- •14. Донорно-акцепторный механизм ковалентной связи. Комплексные соединения.
- •15. Межмолекулярное взаимодействие. Водородная связь.
- •16. Система. Фаза. Компонент. Параметры. Функции состояния: внутренняя энергия и энтальпия. Стандартные условия.
- •17. Первое начало термодинамики. Закон Гесса как следствие 1-го начала термодинамики.
- •17. Первое начало термодинамики. Закон Гесса как следствие 1-го начала термодинамики.
- •18. Стандартная энтальпия образования. Следствие из закона Гесса. Термохимические расчеты.
- •19. Зависимость теплового эффекта реакции от температуры.
- •20. Второе начало термодинамики. Понятие об энтропии. Расчет энтропии.
- •21. Объединенная формула 1 и 2 начала термодинамики. Свободная энергия Гиббса и Гельмгольца.
- •22. Условия самопроизвольного протекания химических реакций.
- •23. Константа химического равновесия. Расчет Кр и Кс. Изотерма химической реакции.
- •24. Принцип подвижного равновесия (принцип Ле-Шателье).
- •25. Скорость химической реакции. Закон действующих масс. Константа скорости.
- •26. Молекулярность и порядок реакции.
- •28. Зависимость скорости реакции от температуры. Правило Вант-Гоффа. Уравнение Аррениуса.
- •29. Энергия активации химической реакции. Аналитический и графический метод расчета.
- •30. Скорость гетерогенной химической реакции.
- •31. Катализ. Сущность гомогенного и гетерогенного катализа.
- •32. Растворы (разбавленные, концентрированные, насыщенные, перенасыщенные).
- •33. Физические и химические процессы при растворении. Растворимость твердых тел и жидкостей в жидкостях.
- •34. Растворимость газов в жидкостях. Закон Генри-Дальтона. Закон распределения.
- •35. Законы Рауля.
- •36. Электролитическая диссоциация. Степень диссоциации. Слабые электролиты.
- •37. Константы диссоциации. Закон разведения.
- •38. Сильные электролиты. Понятие активности и коэффициента активности.
- •39. Электролитическая диссоциация воды. Ионные произведения воды. Водородный показатель. Понятие об индикаторах.
- •40. Гидролиз солей.
- •41. Окислительно-восстановительные реакции. Ионно-электронный метод подбора коэффициентов в окислительно-восстановительных реакциях.
- •42. Возникновение скачка потенциала на границе раздела «металл-раствор». Равновесный электродный потенциал.
- •43. Медно-цинковый гальванический элемент. Процессы на электродах. Эдс.
- •44. Зависимость эдс гальванического элемента от природы реагирующих веществ, температуры и концентрации. Стандартная эдс.
- •45. Стандартный водородный электрод. Формула Нернста. Стандартный потенциал. Ряд напряжения.
- •46. Типы электродов и цепей. Окислительно-восстановительные электроды и цепи.
- •47. Электролиз. Последовательность разряда ионов на катоде и аноде.
- •48. Законы Фарадея. Выход по току.
- •49. Химическая и концентрационная поляризация при электролизе. Перенапряжение.
- •50. Классификация химических источников тока.
- •51. Коррозия металлов. Химическая и электрохимическая коррозия.
- •52. Основные методы борьбы с коррозией.
- •53. Кристаллическое состояние вещества. Химическая связь в кристаллах.
- •54. Сущность физико-химического анализа. Правило фаз. Диаграмма состояния воды.
- •55. Основные принципы построения диаграммы плавкости бинарных систем. Термографический анализ.
- •60. Произведение растворимости. Условия выпадения осадка.
40. Гидролиз солей.
-разложение солей под действием воды.
С точки зрения теории электрической диссоциации, кислота – вещ-во, кот-е в водном раст-ре отщепляет только 1-н вид катионов – Н+. НnA««nH++An-.Основание – такое вещ-во,кот-е в водном р-ре отщепляет только 1-н вид анионов – анионы гидроксила. Me(OH)p ««Mep++pOH- - нейтрализация. Наряду с кислотами и основ-ми сущ-ют амфолиты – вещ-ва, кот-е в зависимости от величины РН могут дисс-ть или по схеме кис-ты или по схеме основ-я. Zn(OH)2, Cr(OH)3.. Zn(OH)2««Zn2+ +2OH-««H2ZnO2««2H++ZnO22- Гидролиз – реакция обратная р-ции нейтрализации. Если ра-ряем соль в воде, то соль диссоц-т на ионы (катион и анион), но одновременно вода диссоц-т на катион водорода и ОН-. Ионы соли могут связываться с Н+ и ОН-. Если степень связанности Н+ с ионами соли будет >, чем ОН-, то р-р соли перейдет в щелочную реакцию, если будут > связаны ОН-, то в кислую р-ю.
Примеры гидролиза.
1) соль слабой к-ты и сильного основ-я.
CH3COONa««CH3COO-+Na+
H2O«« Н++ OH-
CH3COONa+ H2O®® CH3COOH+NaOH
Раствор соли, образов-й слабой кисло-й и силь-м основанием имеет РН>7
Константа гидролиза КГ – это константа равновесия реакции гидролиза.
Кв
КГ = Кв/КД[CH3COOH]
КГ = [CH3COOH] [OH-]/[CH3COO-] [H20] КГ = [CH3COOH] [OH] [H+]/[CH3COO-] [H+]
КД CH3COOH =[CH3COOH-] [H+]/[CH3COOH]
2) соль слабой 2-х – основной кислоты и сильного основания.
1 ступень: Na2CO3+H20=NaHCO3+NaOH 2 ступень: NaHCO3 +H20= NaOH+H2CO3
{ионный вид} РН>7 {ионный вид} PH>7
3
)
cоль сильной к-ты и слабого основания
NH4Cl+H20=HCL+NH4OH PH>7
4)соль сильной к-ты и слаб многоатомного основ-я Al2CO3®®AlOHCl2®®Al(OH)2Cl®®Al(0H)3
5) соль сильной к-ты и силь. основ-я
KNO3+H2O=KOH+HNO3 Гидролизу не подвергается.Р-р такой соли имеет нейтральную р-цию. РН=7
6) соль слаб к-ты и слаб основ-я CH3COONH4+H20=CH3COOH+NH4OH
КГ = Кв/КД CH3COOHКД NH4OH Если к-та сильнее основания , то р-р имеет кислую р-цию, если основ-е сильнее, то щелоч-ю реакц-ю
7 ) соль очень слаб к-ты и очень слаб основ-я Al2S3+6H20=2Al(OH)3¯Ї+3H2S2. Соль подвергается полному гидролитическому разложению.
Степень гидролиза h=число гидролизов молей соли / общ число растворен-х молей соли *100%. h увеличив-я с ростом t°° и с ростом разбавления. h при t т.к. Кв с ростом
SbCl3+2H20««¯ЇSb(OH)2Cl+2HCl РН>7 Р-ры многих солей во избежание гидролиза можно хранить в подкисленном или в подщелочном виде.
41. Окислительно-восстановительные реакции. Ионно-электронный метод подбора коэффициентов в окислительно-восстановительных реакциях.
Окислительно-восстановительные процессы связаны с перераспределением электронов между атомами или ионами веществ, участвующих в реакции. Принято считать процесс отдачи веществом электронов окислением, а процесс присоединения электронов – восстановлением. Если одно вещество теряет электроны, то другое вещество, участвующее в реакции, должно их присоединить, при этом общее число электронов, отдаваемых восстановителем, должно быть равно общему числу электронов, присоединяемых окислителем.
Процесс окисления-воостановления с участием кислородсодержащих ионов является сложным процессом, поскольку одновременно с переходом электронов от восстановителя к окислителю происходит разрыв ковалентных связей. Такие реакции протекают с участием молекул или ионов среды. Существует несколько методов составления окислительно-восстановительных реакций, наиболее совершенным среди которых является ионно-электронный метод. Сущность этого метода заключается в следующем:
1. Вначале составляют частные уравнения процесса окисления и процесса восстановления, записывая вещества в той форме, в которой они существуют в растворе: сильные электролиты в ионной форме, слабые – в молекулярной.
2. С участием ионов среды (Н+ в кислой, ОН- в щелочной) или молекул H2O осуществляют материальный баланс, а затем электронный баланс.
3. Составленные частные уравнения суммируют, умножая на соответствующие коэффициенты, подобранные таким образом, чтобы число электронов, теряемых восстановителем, было бы равно числу электронов, приобретаемых окислителем. В результате получают ионное уравнение окислительно-восстановительной реакции.
4. Переносят соответствующие коэффициенты из ионного уравнения в уравнение реакции, написанное в молекулярной форме, и уравнивают количество ионов, не принимавших участие в процессе окисления и восстановления.
Пример:
