
- •Топография с основами геодезии Курс лекций минск
- •Предисловие
- •1. Введение
- •1.1. Предмет и задачи топографии и геодезии
- •1.2. Краткий очерк развития топографии и геодезии
- •1.3. Единицы мер в топографии и геодезии
- •2. Общие сведения
- •2.1. Форма и размеры Земли
- •Размеры земного эллипсоида
- •2.2. Методы определения формы и размеров Земли
- •2.3. Методы проецирования земной поверхности
- •2.4. Размеры участков земной поверхности, принимаемые за плоскость
- •2.5. Cистемы координат, применяемые в топографии и геодезии
- •2.6. Ориентирование направлений в топографии и геодезии
- •Связь между полярной и прямоугольной системами координат
- •3. Топографические планы и карты
- •3.1. Понятие о плане и карте. Основные свойства и элементы топографических карт
- •3.2. Проекции топографических карт. Зональная система плоских прямоугольных координат
- •3.3. Масштабы планов и карт
- •3.4. Разграфка и номенклатура карт
- •3.5. Понятие о картографической генерализации
- •3.6. Условные знаки топографических карт
- •Центры (местоположения) объектов, изображаемых внемасштабными условными знаками
- •3.7. Рельеф земной поверхности и его изображение на топографических картах
- •3.8. Определение плановых координат и измерение ориентирующих направлений на топографических картах
- •3.9. Анализ топографических карт. Географическое описание местности
- •4. Основы теории ошибок измерений
- •4.1. Понятие об измерениях
- •4.2. Классификация ошибок измерений
- •4.3. Свойства случайных ошибок
- •4.4. Оценка точности результатов равноточных измерений. Арифметическая середина
- •4.5. Оценка точности результатов неравноточных измерений
- •5. Измерения углов
- •5.1. Теодолиты и их виды. Устройство оптических теодолитов
- •5.2. Поверки теодолитов
- •5.3. Установка теодолита и измерение горизонтальных углов
- •5.4. Измерение вертикальных углов
- •5.5. Измерение магнитных азимутов
- •6. Измерение расстояний
- •6.1. Непосредственное измерение расстояний
- •6.2. Определение неприступных расстояний
- •6.4. Понятие об электромагнитных измерениях расстояний
- •7. Геодезические опорные сети
- •7.1. Виды геодезических опорных сетей
- •7.2. Плановая съемочная геодезическая сеть
- •7.3. Математическая обработка теодолитного хода
- •Ведомость вычисления координат
- •7.4. Вычисление координат отдельных точек
- •7.5. Понятие о спутниковых системах позиционирования
- •8. Определение высот точек земной поверхности. Нивелирование
- •8.1 Геометрическое нивелирование
- •8.2. Нивелиры и их устройство
- •8.3. Поверки и юстировки нивелиров
- •8.4. Нивелирование трассы
- •8.5 Обработка результатов геометрического нивелирования Математическая обработка включает два вида работ: вычислительную и графическую (построение профиля).
- •8.6. Тригонометрическое нивелирование
- •8.7. Физические способы нивелирования
- •9. Топографические съемки
- •9.1. Классификация съемок
- •9.2. Способы съемки ситуации и рельефа
- •9.3. Тахеометрическая съемка
- •9.4. Мензульная съемка
- •9.5 Современная технология производства топографической съемки
- •10. Фототопографические съемки
- •10.1. Общие сведения об аэрофотосъемке
- •10.2. Комбинированная съемка
- •10.3. Дешифрирование фотопланов и аэрофотоснимков
- •10.4. Понятие о стереотопографической съемке
- •10.5. Наземная фототопографическая (фототеодолитная) съемка
- •11. Ориентирование на местности
- •11.1. Ориентирование по карте
- •11.2. Определение сторон горизонта по небесным светилам и местным предметам
- •Литература
2.3. Методы проецирования земной поверхности
Для составления топографических карт и планов точки земной поверхности проецируют на поверхность референц-эллипсоида или на плоскость. Проецирование на поверхность референц-эллипсоида выполняется вдоль отвесных линий. Четырехугольник аbcd, полученный проецированием на сферическую поверхность эллипсоида, называют горизонтальной проекцией четырехугольника ABCD местности (рис. 2.4).
Рис. 2.4 |
Рис. 2.5 |
Рис. 2.6 |
При проецировании небольших по площади участков местности, основную уровенную поверхность можно принимать за плоскость. В таком случае отвесные линии можно считать параллельными между собой и горизонтальная проекция практически преобразуется в ортогональную. Согласно рис. 2.5 отрезки ab, bc, cd,…являются ортогональными проекциями соответствующих линий AB, BC, CD,…, углы abc, bcd,…– ортогональными проекциями соответствующих углов ABC, BCD,…, а плоский многоугольник abcd – ортогональной проекцией пространственного многоугольника ABCD. Положение точек и линий местности АВ,ВС,… в ортогональной проекции определяется длинами горизонтальных проложений ab,bc,…и горизонтальными углами между ними.
Длина ортогональной проекции линии местности MN на горизон-тальную плоскость p называется горизонтальным проложением S этой линии (рис. 2.6) и вычисляется из прямоугольного треугольника MNC по формуле S = L×cos ν.
Угол ν между линией местности MN и ее ортогональной проекцией на горизонтальную плоскость S = mn, измеряют непосредственно и называют углом наклона линии. Ортогональные проекции линий на плоскость при ν ≠ 0 всегда меньше соответствующих им отрезков на физической поверхности Земли.
2.4. Размеры участков земной поверхности, принимаемые за плоскость
Р
ассмотрим,
для каких по размерам участков местности
можно применять ортогональное
проецирование, т. е. при которых
кривизна Земли может не учитываться в
процессе создания карты или плана. На
рис. 2.7 изображена часть поверхности
Земли в виде дуги BCD
радиуса R и
ее проекция PQ
на плоскость
PCQ,
где PC = CQ.
Д
Рис. 2.7
Определим разность между длиной касательной S и длиной дуги S1. Выразим угол a в радианах, тогда согласно рис. 2.7 получим, что S = R × tga, а S1 = R×a. Откуда следует, что
DS = R(tga -a). (2.1)
Центральный
угол a по своей
величине незначителен. Поэтому при
разложении tga
в убывающий ряд можно ограничиться
вторым членом ряда и пренебречь
последующими из-за их незначительности.
Тогда
.
Подставим это значение в формулу 2.1. В
результате получим, что
.
(2.2)
Из формулы S1=R×a
получим, что
и заменим a в
формуле 2.2. Окончательно найдем,
что
.
(2.3)
Из
рис. 2.7 видно, что точка D находится
на уровенной поверхности и ее высота
равна нулю. Определим величину отрезка,
характеризующего отклонение точки Q
от уровенной поверхности. Для этого
рассмотрим прямоугольный треугольник
OCQ, откуда (R + h)²
= S² +
R². Упростив
данное равенство, имеем
.
Ввиду малого значения h
в сравнении с 2R окончательно
получим, что
.
(2.4)
Сравнивая формулы 2.3 и 2.4 видно, что значение h существенно больше DS. Если условно принять радиус Земли постоянным, то можно вычислить расхождения DS между длинами дуг на уровенной поверхности и их проекциями на плоскость, а также отклонения высот точек h от их положения на поверхности сферы из-за кривизны Земли (табл. 2.2).
Таблица 2.2
S , км |
DS ,м |
h, м |
1 |
0,00 |
0,08 |
5 |
0,00 |
1,96 |
10 |
0,01 |
7,85 |
20 |
0,07 |
31,39 |
50 |
1,02 |
196,20 |
Значение величины DS возрастает незначительно. При дуге 11 км DS составляет лишь 1:1 000 000 ее длины. Относительная погрешность измерения расстояний современными приборами составляет порядка 1:1 000 000. Поэтому принято считать, что участок радиусом 11 км можно принимать за плоскость, а при определении превышений между точками местности необходимо вводить поправку h.