
- •Оренбургский государственный университет Кафедра автомобильного транспорта
- •Оренбург 2001
- •Содержание
- •1 Введение. Классификация эксплуатационных материалов
- •1.1 Введение
- •1.2 Классификация эксплуатационных материалов
- •1.3 Вопросы для самопроверки
- •2. Автомобильные бензины
- •2.1 Сгорание топлива в двигателе
- •2.2 Эксплуатационные требования к автомобильным бензинам
- •2.3 Свойства автомобильных бензинов
- •2.3.1 Карбюрационные свойства
- •2.3.2 Антидетонационные свойства
- •2.3.3 Коррозионные свойства
- •2.3.4 Стабильность топлива
- •2.4 Ассортимент бензинов
- •2.5 Вопросы для самопроверки
- •3. Дизельные топлива
- •3.1 Эксплуатационные требования к качеству дизельных топлив
- •3.2 Сгорание смеси и оценка самовоспламеняемости дизельных топлив
- •3.3 Показатели и свойства дизельных топлив, влияющие на подачу и смесеобразование
- •3.3.1 Низкотемпературные свойства
- •3.3.2 Вязкостные свойства
- •3.3.3 Испаряемость
- •3.4 Механические примеси и вода в дизельных топливах
- •3.5 Коррозионные свойства дизельных топлив
- •3.6 Ассортимент и маркировка дизельных топлив
- •3.7 Вопросы для самопроверки
- •4. Альтернативные виды топлив
- •4.1 Газообразные топлива
- •4.1.1 Сжиженные газы
- •4.1.2 Сжатые газы
- •4.1.3 Водород
- •4.1.4 Преимущества и недостатки применения газовых топлив
- •4.2 Синтетические спирты
- •4.3 Метилтретичнобутиловый эфир
- •4.4 Газовые конденсаты
- •4.5 Вопросы для самопроверки
- •5. Смазочные масла
- •5.1 Общие понятия о трении и износе
- •5.2 Основные требования к качеству масел
- •5.3 Свойства смазочных масел
- •5.3.1 Вязкостные свойства
- •5.3.3 Противоокислительные и диспергирующие свойства
- •5.3.4 Защитные и коррозионные свойства
- •5.4 Особенности синтетических смазочных материалов
- •5.5 Особенности работы масла в гидромеханических передачах
- •5.6 Изменение свойств масел при эксплуатации
- •5.7 Контроль качества и оценка старения масел
- •5.8 Пути снижения расхода смазочных масел
- •5.9 Существующие системы классификации смазочных масел. Взаимозаменяемость с зарубежными аналогами
- •5.9.1 Классификации моторных масел
- •5.9.1.1 Отечественная классификация моторных масел
- •5.9.1.2 Зарубежные классификации моторных масел
- •5.9.2 Классификации трансмиссионных масел
- •5.9.2.1 Отечественная классификация трансмиссионных масел
- •5.9.2.2 Зарубежная классификация трансмиссионных масел
- •5.10 Вопросы для самопроверки
- •6. Утилизация отработавших нефтепродуктов
- •6.1 Классификация нефтеотходов
- •6.2 Правила обращения с нефтеотходами
- •6.3 Методы регенерации отработанных нефтяных масел
- •6.4 Вопросы для самопроверки
- •7. Пластичные смазки
- •7.1 Общие сведения о структуре, составе и принципах производства смазок
- •7.2 Основные эксплуатационные свойства пластичных смазок
- •7.3 Ассортимент пластичных смазок и их применение
- •7.4 Вопросы для самопроверки
- •8. Технические жидкости
- •8.1 Охлаждающие жидкости
- •8.1.1 Вода, как охлаждающая жидкость
- •8.1.2 Низкозамерзающие охлаждающие жидкости
- •8.2 Жидкости для гидравлических систем
- •8.2.1 Тормозные жидкости
- •8.2.2 Амортизаторные жидкости
- •8.3 Пусковые жидкости
- •8.4 Вопросы для самопроверки
- •9 Конструкционно – ремонтные материалы и технологии их использования
- •9.1 Пластические массы
- •9.2 Клеящие материалы и герметики
- •9.3 Прокладочные материалы
- •9.4 Изоляционные материалы
- •9.5 Вопросы для самопроверки
- •10 Лакокрасочные материалы. Окраска автомобилей. Средства для ухода за автомобилем
- •10.1 Требования к лакокрасочным покрытиям
- •10.2 Строение лакокрасочного покрытия и требования к основным материалам
- •10.3 Классификация лакокрасочных материалов
- •10.4 Технология окраски кузовов автомобилей. Вспомогательные материалы
- •10.5 Химические средства для ухода за автомобилем
- •10.5.1 Моющие средства
- •10.5.2 Чистящие средства
- •10.5.3 Полирующие средства
- •10.6 Вопросы для самопроверки
- •11. Средства защиты от коррозии, технологии и области применения
- •11.2 Основные профилактические мероприятия при эксплуатации
- •11.3 Вопросы для самопроверки
- •12. Нормирование расхода топлив и смазочных материалов
- •12.1 Права, обязанности и полномочия структур управления при нормировании расхода топлив и смазочных материалов
- •12.2 Нормирование расхода топлив для автомобилей общего назначения
- •12.3 Последовательность нормирования расхода топлив для различных категорий автомобилей
- •12.3.1 Последовательность нормирования расхода топлив для легковых автомобилей
- •12.3.2 Последовательность нормирования расхода топлив для автобусов
- •12.3.3 Последовательность нормирования расхода топлив для бортовых грузовых автомобилей
- •12.3.4 Последовательность нормирования расхода топлив для самосвалов
- •12.4 Нормирование расхода топлива для специальных автомобилей
- •12.5 Нормирование расхода смазочных материалов и специальных жидкостей
- •12.6 Вопросы для самопроверки
- •13. Учёт расхода горюче-смазочных материалов. Отчётная документация в атп
- •2. Расчёт фактической себестоимости единицы топлива.
- •13.1 Учёт поступления и расходования топлива в количественном и денежном выражении
- •13.2 Расчёт фактической себестоимости единицы топлива
- •13.3 Учёт пробега автомобиля
- •13.4 Учёт расхода смазочных материалов
- •13.5 Вопросы для самопроверки
- •14 Приёмка, хранение, транспортировка, отпуск и рациональное использование эксплуатационных материалов
- •14.1 Порядок приёмки нефтепродуктов
- •14.2 Хранение нефтепродуктов
- •14.3 Транспортировка нефтепродуктов
- •14.4 Отпуск нефтепродуктов
- •14.5 Методы повышения эффективности использования горюче-смазочных материалов
- •14.6 Вопросы для самоподготовки
- •Список использованных источников
- •Приложение а
- •Приложение б
- •Приложение в
2.3.2 Антидетонационные свойства
Детонационная стойкость, оцениваемая октановым числом (ОЧ), - важнейшее свойство топлива, обеспечивающее работу двигателя без детонации.
Октановым числом топлива называют процентное содержание (по объёму) изооктана в искусственно приготовленной смеси, состоящей из изооктана (ОЧ = 100) и нормального гептана (ОЧ = 0), по своей детонационной стойкости равноценной испытуемому топливу.
Определяют ОЧ моторным и исследовательским методами. Моторным методом ОЧ определяют на одноцилиндровой установке ИТ 9 – 2М, позволяющей проводить испытания с переменной степенью сжатия от 4 до 10 единиц. Исследовательским методом детонационную стойкость бензина определяют на установке ИТ9 – 6 в режиме работы легкового автомобиля при его движении в условиях города. Разница в ОЧ, определённых по исследовательскому и моторному методам, составляет 7 – 10 единиц (при исследовательском методе ОЧ больше).
ОЧ указывают на всех марках бензина. При его определении исследовательским методом в маркировке ставится буква "И", например АИ – 93.
Детонационная стойкость бензина зависит от его группового состава и от того на какой смеси работает двигатель. В топлива, антидетонационные свойства которых не соответствуют эксплуатационным требованиям, добавляют высокооктановые компоненты или специальные присадки – антидетонаторы.
В качестве высокооктановых компонентов применяют вещества, обладающие хорошими антидетонационными свойствами: бензол, этиловый спирт, продукты каталитического крекинга, риформинга и др.
Наиболее распространённой присадкой – антидетонатором, в настоящее время, является тетраэтилсвинец Pb(C2H5)4 (ТЭС).
Установлено, что ТЭС действует, как антидетонатор только при высоких температурах, когда он начинает распадаться с образованием атомного свинца. Механизм действия ТЭС, как антидетонатора описывается следующими выражениями:
Pb(C2H5)4 Pb + 4C2H5, (2.5)
Pb + O2 PbO2. (2.6)
Двуокись свинца вступает в реакцию с перекисями, разрушая их и образуя малоактивные продукты окисления углеводородов и окись свинца.
R – CH2 – OOH + PbO2 COH + PbO + H2O + Ѕ O2. (2.7)
Окись свинца, взаимодействуя с кислородом воздуха, снова окисляется в двуокись свинца, которая вновь способна реагировать с перекисной молекулой. Этим объясняется высокая эффективность малых количеств антидетонатора.
Наиболее существенным недостатком ТЭС является его высокая токсичность.
В чистом виде ТЭС не применяют, так как это может привести к отложению окислов свинца в камере сгорания. В бензин вводят этиловую жидкость, представляющую собой смесь ТЭС с выносителями и красителями. Бензин с этиловой жидкостью называют этилированным. Искусственное окрашивание такого бензина предупреждает о его ядовитости (А – 76 жёлтый; АИ – 93 оранжевый, АИ – 98 голубой).
Токсичность ТЭС, несмотря на его хорошие антидетанационные свойства, обуславливает необходимость разработки новых не токсичных, или менее токсичных антидетонаторов.
2.3.3 Коррозионные свойства
Топливо вызывает коррозию металлов и в жидком и в газообразном состоянии, коррозионное воздействие оказывают и продукты его сгорания.
От углеводородов топлива металлы не корродируют, коррозии способствует наличие в топливе коррозионно-агрессивных соединений: водорастворимых (минеральных) кислот и щелочей, активных сернистых соединений, воды, органических кислот.
Вода, а также водорастворимые кислоты и щёлочи в товарных бензинах отсутствуют, могут попасть при транспортировке и хранении.
Органические кислоты всегда содержатся в топливе (менее активны по сравнению с неорганическими), но их содержание заметно возрастает при длительном хранении. Содержание органических кислот характеризуют кислотностью. Этот показатель нормируют количеством щелочи (в миллиграммах), потребной для нейтрализации кислот, содержащихся в 100 мл топлива.
Сернистые соединения по коррозионной агрессивности подразделяют на активные и неактивные. Их содержание в топливе отрицательно сказывается на таких его свойствах, как стабильность, способность к нагарообразованию, коррозионная агрессивность и др. Сернистые соединения способствуют повышению коррозионной агрессивности продуктов сгорания, приводят к повышению твёрдости нагара. Присутствие данных соединений в топливе крайне нежелательно. Максимальное содержание серы в отечественных бензинах регламентируется соответствующими стандартами и составляет 0,12 %.