- •Строительное материаловедение
- •Лекция1. Строение атома
- •1. Электронное строение атома
- •2. Спектры излучения и поглощения. Главное квантовое число
- •Орбитальное квантовое число. Физический смысл, числовое и буквенное обозначения
- •Магнитное и спиновое квантовые числа
- •Периодический закон и электронное строение атома
- •Периодичность свойств химических элементов
- •3. Атомные радиусы химических элементов
- •4. Энергия ионизации
- •5. Cродство к электрону
- •6. Электроотрицательность
- •Лекция 2. Химическая связь и строение молекул
- •1. Краткая история развития представлений о химической связи
- •2. Квантово-механическое рассмотрение химической связи.
- •2.1. Ковалентная связь
- •Количественные характеристики химической связи
- •Метод валентных связей
- •Метод молекулярных орбиталей (ммо)
- •Сравнение методов валентных связей и молекулярных орбиталей
- •Свойства ковалентной связи
- •Полярность связей и молекул
- •2.2. Ионная связь
- •4. Металлическая связь
- •5. Межмолекулярные взаимодействия
- •6. Водородная связь
- •Лекция 3. Структура материалов
- •1. Основные понятия, термины, определения
- •2. Внутреннее строение матерпалов
- •Микроструктура
- •Кристаллическая структура
- •3.2. Аморфная структура
- •3.3. Аморфно-кристаллическая структура
- •4. Макроструктура
- •4.1. Особенности структуры поверхностного слоя.
- •4.2. Особенности структуры внутреннего слоя.
- •4.3. Основные характеристики макроструктуры
- •Пористость
- •Гигроскопичность
- •Газопроницаемость
- •Паропроницаемость
- •Водопроницаемость
- •Лекция 4. Свойства материалов
- •1. Основные понятия, термины, определения
- •2. Взаимосвязь основных свойств
- •3. Плотность
- •3. Теплофизические свойства
- •3.1. Теплоемкость Основные понятия, термины определения
- •Теплоемкость при нагревании и переходных процессах
- •Химический состав и теплоемкость
- •Агрегатное состояние и теплоемкость
- •Теплоемкость и ее практическое использование
- •3.2. Тепловое расширение Основные понятия, термины, определения
- •Механизм теплового расширения твердых тел
- •Связь “тип химической связи — тепловое расширение”
- •Влияние структуры материала на тепловое расширение
- •3. Теплопроводность Основные понятия, термины, определения
- •Агрегатное состояние вещества и теплопроводность
- •Влияние состава, структуры и параметров состояния на фононную теплопроводность твердого тела (кристалла)
- •Теплопроводность некристаллических тел
- •Теплопроводность гетерогенных систем
- •Плавление материалов Основные понятия, термины, определения
- •Механизм плавления твердого тела
- •Состав и температура плавления
- •Структура твердого тела и температура плавления
- •Взаимосвязь "температура плавления - тепловое расширение "
- •Лекция 5. Деформативные и прочностныесвойства материалов
- •1. Деформативные свойства Основные понятия, термины, определения
- •Упругость
- •Константы упругости
- •Модуль Юнга
- •Пористость и модуль Юнга
- •Термическое расширение и модуль упругости
- •Пластичность
- •Причины и механизм образования пластических деформаций
- •Хрупкость
- •Эластичность
- •2. Прочность
- •Критерии прочности
- •Факторы, влияющие на показатель прочности
- •Общие положения относительно прочности и разрушения материала
- •2. Твердость
- •Факторы, влияющие на твердость материала
- •Способы оценки твердости
- •Лекция 6. Эксплуатационные свойства
- •6.1. Основные понятия, термины, определения
- •6.2. Водостойкость
- •6.3. Морозостойкость Морозостойкость плотных и пористых материалов
- •Механизм разрушения структуры пористых тел при замораживании
- •Факторы, влияющие на морозостойкость
- •6.3. Коррозионная стойкость Основные понятия, термины, определения
- •Виды коррозии строительных материалов
- •Факторы, влияющие на коррозионную стойкость строительных материалов
- •Общие принципы повышения коррозионной стойкости
- •Заключение
Теплоемкость и ее практическое использование
Теплоемкость тела учитывают:
при изучении строения веществ и их свойств;
исследовании фазовых переходов и критических явлений;
расчете суммарного количества примеси в веществе;
определении тепловых эффектов химических реакций.
Выражая, например, Сp = (ΔH /ΔТ) в дифференциальной форме ΔСp = [d(ΔH)/dT], получаем уравнение Кирхгофа: общее изменение теплоемкости системы в результате реакции есть разность сумм теплоемкостей продуктов реакции и исходных веществ:
ΔСp = Σn.ΔCpпр- Σm.ΔСрив;
где n и m — количество исходных веществ и продуктов реакции.
Тепловой эффект реакции в зависимости от температуры определяется из уравнения
ΔH = ΔH2 – ΔH1 или ΔH = ∫ ΔСp dT.
Уравнение Кирхгофа позволяет вычислить тепловой эффект реакции при любой температуре, исходя из известных величин теплового эффекта реакции при какой-либо температуре и изменения теплоемкости процесса. Чем больше ΔСp тем в большей степени температура влияет на тепловой эффект реакции.
Удельная теплоемкость с является также важнейшей характеристикой при расчете тепловых потерь ограждающих конструкций и составлении балансов тепловых агрегатов.
Следует заметить, что теплоемкость, так же, как и плотность, не зависит от анизотропии кристаллов.
3.2. Тепловое расширение Основные понятия, термины, определения
Тепловое расширение — это физическое свойство вещества и материала, характеризующееся изменением размеров тела в процессе его нагревания.
С точки зрения термодинамики тепловое расширение следует рассматривать как изобарический процесс, при котором теплота при нагревании затрачивается на производство работы по расширению и на увеличение внутренней энергии тела. Количественно оно характеризуется изобарным коэффициентом расширения или коэффициентом объемного теплового расширения β:
β = (1/ V)(dV/dТ)p,
где: V — объем тела (твердого, жидкого или газообразного);
Т — его абсолютная температура.
Практически значение β определяется по формуле:
β = (V1 –V2)/V1(T2-T1);
где: Т1 и Т2 — температуры соответственно до и после нагревания;
V1 и V2 — объемы тела соответственно при Т1 и Т2.
Механизм теплового расширения твердых тел
Механизм теплового расширения твердых тел можно представить следующим образом. Если к твердому телу подвести тепловую энергию, то благодаря колебанию атомов в решетке происходит процесс поглощения им теплоты. При этом колебания атомов становятся более интенсивными, т.е. увеличиваются их амплитуда и частота. С увеличением расстояния между атомами увеличивается и потенциальная энергия, которая характеризуется межатомным потенциалом. Последний выражается суммой потенциалов сил отталкивания и притяжения. Силы отталкивания между атомами с изменением межатомного расстояния меняются быстрее, чем силы притяжения; в результате форма кривой минимума энергии оказывается несимметричной, и равновесное межатомное расстояние увеличивается. Это явление и соответствует тепловому расширению.
Тепловое расширение зависит от химических связей, типа структуры кристаллической решетки, ее анизотропии и пористости твердого тела.
