Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции 1-6 С.М..doc
Скачиваний:
169
Добавлен:
25.08.2019
Размер:
927.74 Кб
Скачать

Теплоемкость и ее практическое использование

Теплоемкость тела учитывают:

  • при изучении строения веществ и их свойств;

  • исследовании фазовых переходов и критических явлений;

  • расчете суммарного количества примеси в веществе;

  • определении тепловых эффектов химических реакций.

Выражая, например, Сp = (ΔH /ΔТ) в дифференциальной форме ΔСp = [d(ΔH)/dT], получаем уравнение Кирхгофа: общее изменение теплоемкости системы в результате реакции есть разность сумм теплоемкостей продуктов реакции и исходных веществ:

ΔСp = Σn.ΔCpпр- Σm.ΔСрив;

где n и m — количество исходных веществ и продуктов реакции.

Тепловой эффект реакции в зависимости от температуры определяется из уравнения

ΔH = ΔH2 – ΔH1 или ΔH = ∫ ΔСp dT.

Уравнение Кирхгофа позволяет вычислить тепловой эффект реакции при любой температуре, исходя из известных величин теплового эффекта реакции при какой-либо температуре и изменения теплоемкости процесса. Чем больше ΔСp тем в большей степени температура влияет на тепловой эффект реакции.

Удельная теплоемкость с является также важнейшей характеристикой при расчете тепловых потерь ограждающих конструкций и составлении балансов тепловых агрегатов.

Следует заметить, что теплоемкость, так же, как и плотность, не зависит от анизотропии кристаллов.

3.2. Тепловое расширение Основные понятия, термины, определения

Тепловое расширение — это физическое свойство вещества и материала, характеризующееся изменением размеров тела в процессе его нагревания.

С точки зрения термодинамики тепловое расширение следует рассматривать как изобарический процесс, при котором теплота при нагревании затрачивается на производство работы по расширению и на увеличение внутренней энергии тела. Количественно оно характеризуется изобарным коэффициентом расширения или коэффициентом объемного теплового расширения β:

β = (1/ V)(dV/dТ)p,

где: V — объем тела (твердого, жидкого или газообразного);

Т — его абсолютная температура.

Практически значение β определяется по формуле:

β = (V1 –V2)/V1(T2-T1);

где: Т1 и Т2 — температуры соответственно до и после нагревания;

V1 и V2 — объемы тела соответственно при Т1 и Т2.

Механизм теплового расширения твердых тел

Механизм теплового расширения твердых тел можно представить следующим образом. Если к твердому телу подвести тепловую энергию, то благодаря колебанию атомов в решетке происходит процесс поглощения им теплоты. При этом колебания атомов становятся более интенсивными, т.е. увеличиваются их амплитуда и частота. С увеличением расстояния между атомами увеличивается и потенциальная энергия, которая характеризуется межатомным потенциалом. Последний выражается суммой потенциалов сил отталкивания и притяжения. Силы отталкивания между атомами с изменением межатомного расстояния меняются быстрее, чем силы притяжения; в результате форма кривой минимума энергии оказывается несимметричной, и равновесное межатомное расстояние увеличивается. Это явление и соответствует тепловому расширению.

Тепловое расширение зависит от химических связей, типа структуры кристаллической решетки, ее анизотропии и пористости твердого тела.