
- •Строительное материаловедение
- •Лекция1. Строение атома
- •1. Электронное строение атома
- •2. Спектры излучения и поглощения. Главное квантовое число
- •Орбитальное квантовое число. Физический смысл, числовое и буквенное обозначения
- •Магнитное и спиновое квантовые числа
- •Периодический закон и электронное строение атома
- •Периодичность свойств химических элементов
- •3. Атомные радиусы химических элементов
- •4. Энергия ионизации
- •5. Cродство к электрону
- •6. Электроотрицательность
- •Лекция 2. Химическая связь и строение молекул
- •1. Краткая история развития представлений о химической связи
- •2. Квантово-механическое рассмотрение химической связи.
- •2.1. Ковалентная связь
- •Количественные характеристики химической связи
- •Метод валентных связей
- •Метод молекулярных орбиталей (ммо)
- •Сравнение методов валентных связей и молекулярных орбиталей
- •Свойства ковалентной связи
- •Полярность связей и молекул
- •2.2. Ионная связь
- •4. Металлическая связь
- •5. Межмолекулярные взаимодействия
- •6. Водородная связь
- •Лекция 3. Структура материалов
- •1. Основные понятия, термины, определения
- •2. Внутреннее строение матерпалов
- •Микроструктура
- •Кристаллическая структура
- •3.2. Аморфная структура
- •3.3. Аморфно-кристаллическая структура
- •4. Макроструктура
- •4.1. Особенности структуры поверхностного слоя.
- •4.2. Особенности структуры внутреннего слоя.
- •4.3. Основные характеристики макроструктуры
- •Пористость
- •Гигроскопичность
- •Газопроницаемость
- •Паропроницаемость
- •Водопроницаемость
- •Лекция 4. Свойства материалов
- •1. Основные понятия, термины, определения
- •2. Взаимосвязь основных свойств
- •3. Плотность
- •3. Теплофизические свойства
- •3.1. Теплоемкость Основные понятия, термины определения
- •Теплоемкость при нагревании и переходных процессах
- •Химический состав и теплоемкость
- •Агрегатное состояние и теплоемкость
- •Теплоемкость и ее практическое использование
- •3.2. Тепловое расширение Основные понятия, термины, определения
- •Механизм теплового расширения твердых тел
- •Связь “тип химической связи — тепловое расширение”
- •Влияние структуры материала на тепловое расширение
- •3. Теплопроводность Основные понятия, термины, определения
- •Агрегатное состояние вещества и теплопроводность
- •Влияние состава, структуры и параметров состояния на фононную теплопроводность твердого тела (кристалла)
- •Теплопроводность некристаллических тел
- •Теплопроводность гетерогенных систем
- •Плавление материалов Основные понятия, термины, определения
- •Механизм плавления твердого тела
- •Состав и температура плавления
- •Структура твердого тела и температура плавления
- •Взаимосвязь "температура плавления - тепловое расширение "
- •Лекция 5. Деформативные и прочностныесвойства материалов
- •1. Деформативные свойства Основные понятия, термины, определения
- •Упругость
- •Константы упругости
- •Модуль Юнга
- •Пористость и модуль Юнга
- •Термическое расширение и модуль упругости
- •Пластичность
- •Причины и механизм образования пластических деформаций
- •Хрупкость
- •Эластичность
- •2. Прочность
- •Критерии прочности
- •Факторы, влияющие на показатель прочности
- •Общие положения относительно прочности и разрушения материала
- •2. Твердость
- •Факторы, влияющие на твердость материала
- •Способы оценки твердости
- •Лекция 6. Эксплуатационные свойства
- •6.1. Основные понятия, термины, определения
- •6.2. Водостойкость
- •6.3. Морозостойкость Морозостойкость плотных и пористых материалов
- •Механизм разрушения структуры пористых тел при замораживании
- •Факторы, влияющие на морозостойкость
- •6.3. Коррозионная стойкость Основные понятия, термины, определения
- •Виды коррозии строительных материалов
- •Факторы, влияющие на коррозионную стойкость строительных материалов
- •Общие принципы повышения коррозионной стойкости
- •Заключение
Гигроскопичность
Анализируя вышеизложенное, можно заключить, что при уменьшении радиуса пор ниже критического значения (< 0,5 мкм) исчезает капиллярный подсос, однако жидкость все же заполняет даже мельчайшие поры за счет конденсации паров на их стенки с последующим переходом пленок в столбик жидкости. Такое свойство заполнения пор жидкостью называют гигроскопичностью структуры.
Согласно эмпирическому уравнению Фрейндлиха можно рассчитать количество адсорбированного газа или водяного пара (α):
α = Kpl/n,
где: pl/n — давление газа;
К и п — эмпирические параметры, постоянные для адсорбента и газа при определенной температуре.
Такие высокопористые материалы, как силикагель, древесина керамзитовый гравий и др., могут быть использованы в качестве регуляторов влажности в замкнутых объемах. Ограждающие конструкции из древесины и керамического кирпича благодаря гигроскопичности структуры и в зависимости от климатических условий регулируют влажностный режим помещения, т.е. они как бы дышат.
П.А. Ребиндер дает следующую классификацию пор по насыщению их жидкостью (табл. 3.4).
Пористость как основная характеристика структуры во многом определяет такие ее свойства, как теплопроводность, прочность и др.
Таблица 3.4. Классификация пор по насыщению их жидкостью
Структура материала |
Размер пор, мкм |
Характер пор |
Характер процесса |
Физический смысл явления |
Крупнопористая |
>10 (20) |
Макропоры (резервные) |
Насыщение окунанием |
Гравитационное вытеснение газа жидкостью |
Пористая |
10 (20)…0,5 |
Капилляры (опасные) |
Капиллярный подсос |
φкп > φпт |
Мелкопористая |
< 0,5 |
Микропоры (безопасные) |
Сорбция и конденсация |
α= Кр1/n |
Газопроницаемость
Газопроницаемость - свойство пористой структуры пропускать газ при перепаде давлений. Газопроницаемость зависит от размеров и вида пор, поэтому этот показатель часто используют при оценке равномерности структуры.
Наибольшее значение газопроницаемости соответствует размеру пор порядка 20... 100 мкм. Однако проницаемость газов через бетоны может происходить и при более низких значениях размера пор (0,1 мкм и ниже), например, в тонких трещинах.
Газопроницаемость весьма чувствительна к изменению структуры изделий. Так, если при некотором изменении структуры открытая пористость изменилась в 2 раза, то газопроницаемость меняется более чем в 100 раз.
Поскольку материал, как правило, имеет макро- и микропоры, перенос газа может происходить одновременно вязкостным и молекулярным потоками, которые подчиняются соответственно законам Пуазейля и Кнудсена.
Таблица 3.5. Сопротивление воздухопроницанию некоторых материалов и конструкций.
Материал конструкции |
Толщина слоя, мм |
Сопротивление воздухопроницанию, м2.ч.Па/кг |
Кирпичная кладка |
120 |
2000 |
Обшивка из шпунтованных досок |
20…25 |
15 |
Плиты минераловатные, жесткие |
50 |
2 |
Легкий бетон, слитный |
400 |
13000 |
Цементно-песчаная штукатурка |
15 |
373 |
Пенобетон автоклавный |
100 |
1960 |
Бетон тяжелый, слитный |
100 |
19620 |
Для вывода уравнения газопроницаемости пористость материала условно представляют в виде цилиндрических каналов одинакового сечения, идущих параллельно направлению движения газа.
Уравнение Пуазейля хорошо отражает процесс газопроницаемости, но очень сложно для практических расчетов. Поэтому часто для расчета газопроницаемости строительных изделий и конструкций используют упрощенную формулу Дарси, хотя она описывает лишь перенос газа через стенку:
V = Kr.А. τ.Δр/δ,
где V — объемный или массовый поток газа в единицу времени, м3/c или кг/с;
Kr — коэффициент газопроницаемости. Для объемной газопроницаемости — м2/Па.с; для массовой — кг/м.Па.с;
А — площадь сечения потока, м2;
τ — время протекания процесса, с;
δ — глубина проникания газа, м.
Δр – Разность давлений газа на входе и выходе из поры, Па.с.
Коэффициент газопроницаемости фактически является той физической константой для каждой пористой структуры, которая оценивает ее способность, при определенных условиях, пропускать газ.
При расчете строительных конструкций учитывают газопроницаемость структуры материалов через сопротивление воздухопроницанию.