
- •Каротаж потенциалов самопроизвольной поляризации
- •(каротаж ПС)
- •Значение повторной интерпретации данных геофизических исследований разведочных скважин при построении геологической модели месторождений.
- •Компания Paradigm переходит на 64-разрядную платформу Intel
- •Компьютерные технологии ГИС бурящихся скважин
- •Компьютерные технологии и оборудование для исследований действующих нефтяных и газовых скважин
- •Структура геофизических исследований скважин в России
- •Структура службы ГИС в России
- •Компьютерные технологии ГИС бурящихся скважин
- •Задачи и перспективы развития ГИС в России
- •Интеграция различных методов исследований
- •Роль геофизической информации в построении информационных и управляющих систем
- •Перспективы российской службы ГИС
- •Список использованных источников
- •1. Пространственная компоновка элементов зондового устройства
- •2. Структурная схема аппаратуры
- •IV. Технология проведения исследования скважины
- •V. Структура системы контроля качества результатов ГИС
- •1. Температурные влияния
- •3. Механические деформации деталей
- •4. Непостоянство напряжений источника питания
- •5. Изменение влажности и атмосферного давления
- •6. Смена изношенных частей генератора
- •7. Влияние посторонних предметов
- •VII. Заключение
- •Цель работы: оценка ФЕС и насыщения коллекторов Самотлорского месторождения.
- •Самотлорское месторождение расположено в центральной части Западно-Сибирской плиты на восточном склоне структуры первого порядка Нижневартовского свода, в пределах Тарховского куполовидного поднятия.
- •Сметная стоимость проектных работ.
- •1. Общая часть.
- •1.1. Географо-экономический очерк.
- •1.2. Геолого-геофизическая изученность района работ.
- •1.3. Геологическое строение месторождения
- •1.3.1.Литолого-стратиграфическая характеристика
- •Доюрские образования
- •Юрская система
- •Меловая система
- •Палеогеновая система
- •Четвертичная система
- •1.3.2. Тектоника
- •1.3.3. Нефтегазоностность
- •1.5.1. Объем и комплекс геофизических исследований скважин
- •Таблица 1.5.1
- •Таблица 1.5.2
- •1.5.2. Методика интерпретации материалов ГИС
- •Определение геофизических параметров
- •Оценка характера насыщения коллекторов и обоснование положения межфлюидных контактов (ГНК и ВНК)
- •Алгоритмы оценки характера начального насыщения коллекторов
- •Определение коэффициента пористости коллекторов
- •Таблица 1.5.6
- •Определение коэффициента нефтегазонасыщенности коллекторов
- •Оценка коэффициента нефтенасыщенности коллекторов газовой шапки
- •Заключение по оперативной интерпретации данных ГИС.
- •2. Проектная часть
- •2.1. Выбор участка работ
- •2.2. Априорная ФГМ объекта и задачи работ
- •2.3. Выбор методов исследований и их задачи
- •2.4. Методика и техника проведения работ
- •Электрические методы
- •Методы потенциалов самопроизвольной поляризации (ПС)
- •Методы кажущегося сопротивления (КС)
- •Боковой каротаж
- •Индукционный каротаж
- •Радиоактивные методы
- •Гамма-каротаж
- •Акустический каротаж
- •2.5. Метрологическое обеспечение проектируемых работ
- •Аппаратура и оборудование
- •Регистрирующая аппаратура
- •2.5.Камеральные работы
- •Методы автоматизированной обработки геофизической информации.
- •2.6. Интерпретация геофизических данных
- •Физические основы интерпретации
- •Интерпретация метода ПС
- •Интерпретация радиоактивных методов
- •Интерпретация акустических методов
- •3. Специальная часть
- •О фокусирующих системах электромагнитного каротажа
- •Mt = JntS.
- •Фаза магнитного поля или э.д.с. в измерительной катушке описывается выражением
- •Типичные диаграммы.
- •Одной из основных задач ВИКИЗ – это расчленение разреза.
- •Рис. 3.12. Диаграммы для модели глина — Водонасыщенный пласт — глина.
- •Водоплавающей нефтенасыщенный коллектор, перекрытый глиной.
- •Рис. 3.13. Диаграммы для модели глина — водонасыщенный пласт — уплотненный пласт. Усл. обозн. см. рис. 3.10.
- •Рис. 3.14. Диаграммы для модели глина — нефтенасыщенный пласт — глина. Усл. обозн. см. рис. 3.10.
- •Рис. 3.16. Диаграммы для модели глина — газонасыщенный пласт — нефтенасыщенный пласт.
- •Общие ограничения электромагнитных методов каротажа
- •3.3. Аппаратура, её сертификация и метрологическая поверка
- •Структурная схема аппаратуры
- •Схема функционирования скважинного прибора и наземной панели
- •Геофизические работы в скважинах будут выполняться комплексным отрядом геофизических исследований в скважинах, действующим в составе Нижневартовской геофизической экспедиции.
- •Нижневартовская экспедиция геофизических исследований скважин обеспечивает организацию работ входящих в ее состав отрядов, осуществляет руководство ими и контроль за их работой.
- •Экспедиция ГИС входит в состав производственного геофизического объединения „Нижневартовскнефтегеофизика”.
- •Учет и оплата выполненных работ производятся на основании „Акта о выполнении геофизических работ”.
- •Для решения поставленных геологических задач предусматривается выполнение ГИС в два этапа: первый – в открытом стволе скважины, до спуска эксплуатационной колонны; второй – в эксплуатационной колонне.
- •Запись геофизических параметров происходит в следующей последовательности:
- •4.2.1.1.Анализ опасных факторов и мероприятий по их устранению
- •4.2.1.2.Анализ вредных факторов и мероприятий по их устранению
- •Вывод уравнения геотермограммы
- •Вывод этого уравнения дается по проф. А.К. Козырину.
- •Рис. 15.2. К выводу уравнения геотермограммы
vk.com/club152685050 | vk.com/id446425943
комитеты, компании, ВНИИ, НИИ;
o автоматизация процессов объектно-ориентированной и комплексной обработки ГГИ при проведении поисково-разведочных работ и моделировании залежи;
o интегрированная интерпретация ГГИ и подготовка решений для управления процессами разработки объектов УВС, ПХГ и строительства скважин;
o создание локальных, региональных и отраслевых баз и банков данных геолого-геофизической информации БДГГин при поиске – разведке – обустройстве – разработке – добыче – эксплуатации и мониторинге объектов УВС и ПХГ.
За основу подхода к созданию единой информационно-вычислительной сети принят иерархический принцип организации информационно-
вычислительных систем по уровням: локальный – региональный – отраслевой.
Формирование ведомственных центров геолого-геофизической информации направлено на обеспечение в перспективе Федерального центра топливно-
энергетического комплекса страны. ХХI век является веком компьютеризации и использования информационных технологий для прогнозирования и управления технологическими процессами больших систем с целью оптимизации технологического производства. Информация ГИС имеет определяющее значение при решении этих проблем. –[2]
Перспективы российской службы ГИС
Первоочередной задачей российской службы ГИС является завершение её коренного технического перевооружения, переход на созданные в России компьютерные технологии работ. Отечественная служба ГИС будет сохраняться и развиваться, в основном, на собственной научно-технической основе, с использованием достижений мирового геофизического сообщества.
Основные объемы ГИС на территории России для различных Заказчиков
vk.com/club152685050 | vk.com/id446425943
будут и в дальнейшем, по экономическим и организационным причинам,
выполняться российскими геофизиками, с обеспечением требуемого технического уровня и эффективности работ. В то же время представляется весьма перспективной интеграция сил с западными геофизическими компаниями, как при создании новой техники и технологий ГИС, так и при совместном осуществлении геофизического сервиса, в России и за её пределами. –[1]
vk.com/club152685050 | vk.com/id446425943
Заключение
Внедрение новых технологий в области геофизических методов исследования скважин позволяют проводить масштабные исследования, с
высокой точностью определять конструкции скважин и породы из которых они слагаются. Современные автоматизированные приборы позволяют избегать аварии на производстве, а что самое главное уменьшить затраты по проведению исследований.
vk.com/club152685050 | vk.com/id446425943
Список использованных источников
1)Центр геоинформации Томское отделение Сибирский научно-
исследовательский холдинг
2)http://www.raen.ru/index.php?sub_cat=39&cat=4 –[1]
3)http://geo.com.ru/db/msg.html?mid=1161636&uri=page... –[2]
vk.com/club152685050 | vk.com/id446425943
Содержание
I. ВВЕДЕНИЕ
II. АНАЛИЗ СТРУКТУРНОЙ СХЕМЫ АППАРАТУРЫ
1.ПРОСТРАНСТВЕННАЯ КОМПОНОВКА ЭЛЕМЕНТОВ ЗОНДОВОГО УСТРОЙСТВА
2.СТРУКТУРНАЯ СХЕМА АППАРАТУРЫ
III. ПОДГОТОВКА АППАРАТУРЫ К ПРОВЕДЕНИЮ ГИС (НАСТРОЙКА,
ПОВЕРКА, ГРАДУИРОВКА)
IV. ТЕХНОЛОГИЯ ПРОВЕДЕНИЯ ИССЛЕДОВАНИЯ СКВАЖИНЫ
V. СТРУКТУРА СИСТЕМЫ КОНТРОЛЯ КАЧЕСТВА РЕЗУЛЬТАТОВ ГИС
VI. ДЕСТАБИЛИЗИРУЮЩИЕ ФАКТОРЫ И МЕТОДЫ СТАБИЛИЗАЦИИ
1.ТЕМПЕРАТУРНЫЕ ВЛИЯНИЯ
2.КВАРЦЕВАЯ СТАБИЛИЗАЦИЯ ЧАСТОТЫ
3.МЕХАНИЧЕСКИЕ ДЕФОРМАЦИИ ДЕТАЛЕЙ
4.НЕПОСТОЯНСТВО НАПРЯЖЕНИЙ ИСТОЧНИКА ПИТАНИЯ
5.ИЗМЕНЕНИЕ ВЛАЖНОСТИ И АТМОСФЕРНОГО ДАВЛЕНИЯ
6.СМЕНА ИЗНОШЕННЫХ ЧАСТЕЙ ГЕНЕРАТОРА
7.ВЛИЯНИЕ ПОСТОРОННИХ ПРЕДМЕТОВ
VII. ЗАКЛЮЧЕНИЕ
VIII. СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
vk.com/club152685050 | vk.com/id446425943
I. Введение
Одной из важнейших задач нефтепромысловой геофизики является повышение точности и достоверности количественной интерпретации промыслово-геофизических данных. Решение этой задачи возможно лишь при высокой точности скважинных измерений и воспроизводимости оценок параметров разреза, получаемых всем арсеналом технических средств. В
настоящее время на геофизических предприятиях, осуществляющих промыслово-геофизические исследования в бурящихся нефтяных и газовых скважинах, в эксплуатационных находится большое количество разнотипных средств измерений (СИ). В силу многих причин – изготовления аппаратуры на предприятиях различных ведомств с разным техническим уровнем, отсутствия для отдельных типов аппаратуры необходимых средств метрологического контроля, нарушения правил эксплуатации аппаратуры и др. – качество геофизических измерений не всегда удовлетворяет требованиям нефтепромысловой геофизики. Для достижения единства и регламентированной точности скважинных измерений необходимо дальнейшее совершенствование технико-методических основ количественных приёмов оценки и контроля качества геофизических измерений.
Стандартизация результатов геофизических измерений в скважинах может осуществляться несколькими путями. Один из них – традиционный путь метрологического обеспечения СИ с привлечением методом физического моделирования, сосредоточения физических моделей в испытательных центрах и передачи мер эталона образцовым и поверочным устройствам,
являющимся средствами метрологического контроля геофизической аппаратуры в производственных условиях. В последние годы интенсивно развивались методологические основы другого приёма стандартизации промыслово-геофизической аппаратуры – с использованием разрезов специально обустроенных контрольных скважин. При этом подходе
vk.com/club152685050 | vk.com/id446425943
геофизические информационно-измерительные системы (ИИС) поверяются в динамическом режиме, т.е. в котором осуществляются реальные скважинные измерения.
Предлагаемая работа посвящена исследованию контроля качества такого метода, как высокочастотное индукционное каротажное изопараметрическое зондирование (ВИКИЗ), базирующегося на измерении относительных фазовых характеристик. Результаты интерпретации диаграмм ВИКИЗ в комплексе с данными других методов ГИС и петрофизической информацией позволяют определять коэффициент нефтегазонасыщения,
литологию терригенного разреза, оценивать неоднородность коллекторских свойств на интервалах пористо-проницаемых пластов, выделять интервалы уплотнённых песчаников с карбонатным или силикатным цементов и др.