
- •1 Предмет теплотехники. Цели и задачи курса. Задачи теплотехники в подготовке будущего учителя теплотехники.
- •7 Теплоемкость газов. Уравнение Майера. Теплоемкость воды, пара и твердых тел.
- •Для любого идеального газа справедливо соотношение Майера:
- •23 Способы передачи тепла и виды теплообмена. Теплопередача через стенку и факторы, влияющие на ее интенсивность. Способы увеличения и уменьшения теплопередачи через стенку.
- •24 Теплопроводность как способ теплообмена. Теплопроводность простейших тел (плоская стенка, цилиндр, шар).
- •34 Понятие о нижнем и верхнем пределах взрываемости газообразного топлива. Особенности сжигания горючего газа при его различной концентрации в воздухе.
- •40 Паровые турбины (классификация, основные понятия об устройстве и принципе действия, основные характеристики).
- •Паровые турбины - принцип работы
- •41 Газотурбинные установки (классификация, устройство, принцип действия, пути повышения кпд).
- •42 Тепловые электрические станции. Конденсационные электростанции (кэс).
- •43 Комбинированная выработка тепла и электрической энергии. Теплоэлектроцентрали (тэц).
- •44 Атомные электрические станции.
- •45 Прямые источники получения электрической энергии. Мгд-генераторы.
- •46 Возобновляемые источники энергии, техническая и экономическая эффективность их использования в современных условиях.
- •47 . Перспективы развития теплоэнергетики. Возможное изменение топливно-энергетического баланса в России и во всем мире на ближайшую и дальнюю перспективу.
- •48 Способы экономии тепла и электрической энергии в быту и на производстве.
- •49 Приборы учета и регулирования расхода энергоносителей и воды.
- •50 Способы повышения кпд различных энергетических установок.
- •Способ повышения кпд малых котельных
- •51 Методы и приборы для замера параметров воздуха и рабочих тел, используемые в энергетических установках и в быту.
- •Приборы для измерения параметров воздушной среды
- •52 Факторы, влияющие на ощущение теплового комфорта человеком.
- •53 Приборы и методы для замера температуры. Приборы и методы для замера давления.
- •54 Теплопередача через ограждающие конструкции зданий. Способы уменьшения тепловых потерь помещения.
- •55 Экономические и экологические проблемы при добыче и использовании топлива.
- •Экологические проблемы, связанные с добычей нефти и газа.
42 Тепловые электрические станции. Конденсационные электростанции (кэс).
Теплова́я электроста́нция— электростанция, вырабатывающая электрическую энергию за счет преобразования химической энергии топлива в механическую энергию вращения вала электрогенератора.Типы:Котлотурбинные электростанции, Конденсационные электростанции (КЭС, историчски получили название ГРЭС - государственная районная электростанция).
теплоэлектроцентрали (теплофикационные электростанции, ТЭЦ).Газотурбинные электростанции.Электростанции на базе парогазовых установок.Электростанции на основе поршневых двигателей. С воспламенением от сжатия (дизель).C воспламенением от искры.Комбинированного цикла.Конденсационная электростанция (КЭС) — тепловая электростанция, производящая только электрическую энергию.
Принцип работы
Схема КЭС на угле: 1 — градирня; 2 — циркуляционный насос; 3 — линия электропередачи; 4 — повышающий трансформатор; 5 — турбогенератор; 6 — цилиндр низкого давления паровой турбины; 7 — конденсатный насос; 8 — поверхностный конденсатор; 9 — цилиндр среднего давления паровой турбины; 10 — стопорный клапан; 11 — цилиндр высокого давления паровой турбины; 12 — деаэратор; 13 — регенеративный подогреватель; 14 — транспортёр топливоподачи; 15 — бункер угля; 16 — мельница угля; 17 — барабан котла; 18 — система шлакоудаления; 19 — пароперегреватель; 20 — дутьевой вентилятор; 21 — промежуточный пароперегреватель; 22 — воздухозаборник; 23 — экономайзер; 24 — регенеративный воздухоподогреватель; 25 — фильтр; 26 — дымосос; 27 — дымовая труба.Вода, нагреваемая в паровом котле до состояния перегретого пара (520—565 градусов Цельсия), вращает паровую турбину, приводящую в движение турбогенератор.
Избыточное тепло выбрасывается в атмосферу (близлежащие водоёмы) через конденсационные установки в отличие от теплофикационных электростанций, отдающих избыточное тепло на нужды близлежащих объектов (например, отопление домов).
Конденсационная электростанция как правило работает по циклу Ренкина.
43 Комбинированная выработка тепла и электрической энергии. Теплоэлектроцентрали (тэц).
Комбинированная выработка электрической и тепловой энергии (теплофикация) - это наиболее ффективный способ экономии топлива, как в жилищно-коммунальном хозяйстве, так и в промышленности. Как остроумно заметил академик Л.А. Мелентьев, «пока действует второй закон термодинамики, будет существовать разумная область теплофикации» [I]. Но в настоящее время в России комбинированная выработка тепловой и электрической энергии производится практически только на паротурбинных теплоэлектроцентралях (ТЭЦ), которые дают только 36% тепловой энергии, так как применение таких ТЭЦ возможно только в крупнейших городах, где имеется достаточная плотность тепловых нагрузок. Основная часть тепловой энергии (46%) производится в котельных [2], которые не только не производят электроэнергию, но и являляются ее крупнейшими потребителями в сфере жилищно-коммунального хозяйства. С другой стороны, при среднем по России КПД тепловых конденсационных электростанций (КЭС) 25% (в США 35%) [2], это означает, что 75% теплоты сгорания топлива выбрасывается в атмосферу через градирни.Теплоэлектроцентра́ль (ТЭЦ) — разновидность тепловой электростанции, которая производит не только электроэнергию, но и является источником тепловой энергии в централизованных системах теплоснабжения (в виде пара и горячей воды, в том числе и для обеспечения горячего водоснабжения и отопления жилых и промышленных объектов). Как правило, ТЭЦ должна работать по теплофикационному графику, то есть выработка электрической энергии зависит от выработки тепловой энергии.Совмещение функций генерации тепла и электроэнергии (когенерация) очень выгодно, поскольку горячее теплоснабжение и в особенности отопление являются дополнительными контурами охлаждения для паротурбинных установок ТЭЦ, что повышает их КПД.При размещении ТЭЦ учитывается близость потребителей тепла в виде горячей воды и пара.