
- •Оглавление
- •История развития баз данных
- •Тенденции в мире систем управления базами данных
- •1. Реляционные системы
- •1.1 Стандартизация языка sql
- •1.2 Использование мультипроцессорных организаций
- •1.3 Интеграция и интероперабельность
- •2. Постреляционные системы
- •2.1 Базы сложных объектов, реляционная модель с отказом от первой нормальной формы
- •2.2 Активные базы данных
- •2.3 Дедуктивные базы данных
- •2.4 Темпоральные базы данных
- •2.5 Интегрированные или федеративные системы и мультибазы данных
- •2.6 Субд следующего поколения
- •2.7 Объектно-ориентированные базы данных
- •3. Распределенные субд
- •3.1 Синхронизация доступа к данным
- •3.2 Управление транзакциями
- •3.3 Поддержание копий данных в нескольких узлах сети
- •3.4 Фрагментация объектов бд
- •3.5 Алгоритмы выполнения реляционных операций
- •4. Системы бд с многоуровневой защитой
- •Состав и функции систем управления базами данных
- •Информационная модель данных, ее состав (концептуальная, логическая и физическая модели)
- •Три типа логических моделей баз данных: иерархическая, сетевая, реляционная
- •Типы взаимосвязей в модели: «один к одному», «один ко многим», «многие ко многим»
- •Обеспечение непротиворечивости и целостности данных в базе
- •Реляционная модель данных
- •1. Основные понятия реляционной модели данных
- •2. Основы реляционной алгебры
- •Нормализация баз данных
- •Этапы проектирования баз данных
- •Классификация моделей данных
- •Инфологическое моделирование предметной области.
- •Модель "сущность-связь"
- •Концептуальные и физические er-модели
- •Принципы поддержки целостности в реляционной модели данных. Целостность базы данных.
- •1. Ограничения первичного ключа
- •2. Ограничение уникальности
- •3. Ограничение внешнего ключа
- •4. Ограничение значения по умолчанию
- •Индексирование
- •Защита информации в базах данных
- •Сравнительный анализ субд
- •Критерии выбора субд при создании информационных систем
- •Администрирование базы данных
2.5 Интегрированные или федеративные системы и мультибазы данных
Направление интегрированных или федеративных систем неоднородных БД и мульти-БД появилось в связи с необходимостью комплексирования систем БД, основанных на разных моделях данных и управляемых разными СУБД.
Основной задачей интеграции неоднородных БД является предоставление пользователям интегрированной системы глобальной схемы БД, представленной в некоторой модели данных, и автоматическое преобразование операторов манипулирования БД глобального уровня в операторы, понятные соответствующим локальным СУБД. В теоретическом плане проблемы преобразования решены, имеются реализации.
При строгой интеграции неоднородных БД локальные системы БД утрачивают свою автономность. После включения локальной БД в федеративную систему все дальнейшие действия с ней, включая администрирование, должны вестись на глобальном уровне. Поскольку пользователи часто не соглашаются утрачивать локальную автономность, желая тем не менее иметь возможность работать со всеми локальными СУБД на одном языке и формулировать запросы с одновременным указанием разных локальных БД, развивается направление мульти-БД. В системах мульти-БД не поддерживается глобальная схема интегрированной БД и применяются специальные способы именования для доступа к объектам локальных БД. Как правило, в таких системах на глобальном уровне допускается только выборка данных. Это позволяет сохранить автономность локальных БД.
Как правило, интегрировать приходится неоднородные БД, распределенные в вычислительной сети. Это в значительной степени усложняет реализацию. Дополнительно к собственным проблемам интеграции приходится решать все проблемы, присущие распределенным СУБД: управление глобальными транзакциями, сетевую оптимизацию запросов и т.д. Очень трудно добиться эффективности.
Как правило, для внешнего представления интегрированных и мульти-БД используется (иногда расширенная) реляционная модель данных. В последнее время все чаще предлагается использовать объектно-ориентированные модели, но на практике пока основой является реляционная модель. Поэтому, в частности, включение в интегрированную систему локальной реляционной СУБД существенно проще и эффективнее, чем включение СУБД, основанной на другой модели данных.
2.6 Субд следующего поколения
Термин "системы следующего (или третьего) поколения" вошел в жизнь после опубликования группой известных специалистов в области БД "Манифеста систем баз данных третьего поколения". Cторонники этого направления придерживаются принципа эволюционного развития возможностей СУБД без коренной ломки предыдущих подходов и с сохранением преемственности с системами предыдущего поколения.
Частично требования к системам следующего поколения означает просто необходимость реализации давно известных свойств, отсутствующих в большинстве текущих реляционных СУБД (ограничения целостности, триггеры, модификация БД через представления и т.д.). В число новых требований входит полнота системы типов, поддерживаемых в СУБД; поддержка иерархии и наследования типов; возможность управления сложными объектами и т.д.
Одной из наиболее известных СУБД третьего поколения является система Postgres, а создатель этой системы М.Стоунбрекер, по всей видимости, является вдохновителем всего направления. В Postgres реализованы многие интересные средства: поддерживается темпоральная модель хранения и доступа к данным и в связи с этим абсолютно пересмотрен механизм журнализации изменений, откатов транзакций и восстановления БД после сбоев; обеспечивается мощный механизм ограничений целостности; поддерживаются ненормализованные отношения (работа в этом направлении началась еще в среде Ingres), хотя и довольно странным способом: в поле отношения может храниться динамически выполняемый запрос к БД.
Одно свойство системы Postgres сближает ее с объектно-ориентированными СУБД. В Postgres допускается хранение в полях отношений данных абстрактных, определяемых пользователями типов. Это обеспечивает возможность внедрения поведенческого аспекта в БД, т.е. решает ту же задачу, что и ООБД, хотя, конечно, семантические возможности модели данных Postgres существенно слабее, чем у объектно-ориентированных моделей данных.
Хотя отнесение СУБД к тому или иному классу в настоящее время может быть выполнено только условно (например, иногда объектно-ориентированную СУБД O2 относят к системам следующего поколения), можно отметить три направления в области СУБД следующего поколения. Чтобы не изобретать названий, будем обозначать их именами наиболее характерных СУБД.
Направление Postgres. Основная характеристика: максимальное следование (насколько это возможно с учетом новых требований) известным принципам организации СУБД (если не считать упоминавшейся коренной переделки системы управления внешней памятью).
Направление Exodus/Genesis. Основная характеристика: создание собственно не системы, а генератора систем, наиболее полно соответствующих потребностям приложений. Решение достигается путем создания наборов модулей со стандартизованными интерфейсами, причем идея распространяется вплоть до самых базисных слоев системы.
Направление Starburst. Основная характеристика: достижение расширяемости системы и ее приспосабливаемости к нуждам конкретных приложений путем использования стандартного механизма управления правилами. По сути дела, система представляет собой некоторый интерпретатор системы правил и набор модулей-действий, вызываемых в соответствии с этими правилами. Можно изменять наборы правил (существует специальный язык задания правил) или изменять действия, подставляя другие модули с тем же интерфейсом.
В целом можно сказать, что СУБД следующего поколения - это прямые наследники реляционных систем.