
- •Вопрос № 1.1. Преобразователи механических величин и системы дистанционной передачи.
- •Реостатные преобразователи.
- •Тензометрические преобразователи.
- •Индуктивные преобразователи.
- •Роторный индуктивный преобразователь (индуктивный круговой дискретный).
- •Вращающиеся (поворотные) трансформаторы.
- •Вопрос № 1.2. Оптический преобразователь, работающий с датчиками накапливающего типа.
- •Абсолютные (кодирующие) преобразователи перемещений – более совершенные.
- •Вопрос № 1.3. Дифференциально-трансформаторные преобразователи перемещений.
- •Ф ерродинамические преобразователи.
- •Электросиловой нормирующий преобразователь.
- •Пневмосиловой нормирующий преобразователь.
- •Вопрос № 1.4. Принципы измерение температур. Температурные шкалы. Термометры расширения и манометрические термометры.
- •Термометры расширения.
- •Манометрические термометры.
- •Вопрос № 1.5. Термопреобразователи сопротивления.
- •Промышленные термопреобразователи сопротивления.
- •П риборы, работающие в комплекте с термопреобразователями сопротивления.
- •Вопрос № 1.7. Термоэлектрические преобразователи.
- •Стандартные термоэлектрические преобразователи.
- •Приборы, работающие в комплекте с термоэлектрическими преобразователями.
- •Вопрос № 1.9. Пирометры излучения.
- •Принципиальные схемы пирометров.
- •Вопрос № 1.10. Измерение давления.
- •Жидкостные манометры.
- •Вопрос № 1.11. Деформационные манометры.
- •Вопрос № 1.12. Измерение расхода.
- •Расходомеры переменного перепада давления.
- •Вопрос № 1.13. Стандартные сужающие устройства.
- •Особые случаи измерения расхода методом переменного перепада.
- •Вопрос № 1.14.
- •Расходомеры скоростного напора.
- •Вихревые расходомеры.
- •Вопрос № 1.16. Электромагнитные (индукционные) расходомеры.
- •Ультразвуковые расходомеры.
- •Вопрос № 1.17. Массовые расходомеры. Кориолисовый расходомер.
- •Методы и приборы для измерения состава и свойств веществ.
- •Ионометрические анализаторы.
- •Измерительные электроды.
- •Электрокондуктометрические анализаторы.
- •Измерительные схемы экм анализаторов.
- •Низкочастотная безэлектродная кондуктометрия.
- •Высокочастотная безэлектродная кондуктометрия.
- •Индуктивные ячейки.
- •Газовый анализ.
- •Механические газоанализаторы.
- •Термокондуктометрические газоанализаторы.
- •Термохимические газоанализаторы.
- •Магнитные газоанализаторы.
- •Оптические газоанализаторы.
- •Фотоколориметрические газоанализаторы.
- •Газовая хроматография.
- •Аппаратурное оформление процесса хроматографии.
- •Способы расшифровки хроматографии.
- •Измерение влажности.
- •Гигрометры точки росы.
- •Кулонометрические гигрометры.
- •Гигрометры с подогревными электрическими датчиками.
- •Гигрометры с электролитическими чувствительными элементами.
- •Психрометры.
- •Влагомеры для твердых и сыпучих тел.
- •Измерение плотностей жидкостей и газов.
- •Ареометрические плотномеры.
- •Весовые плотномеры.
- •Гидростатические плотномеры.
- •Радиоизотопные плотномеры.
- •Вибрационные плотномеры.
- •Измерение вязкости.
- •Капиллярные вискозиметры.
- •Ротационные вискозиметры.
- •Вискозиметры с падающим шариком.
- •Вибрационные вискозиметры.
- •Оптические методы анализа.
- •Колориметрический метод анализа.
- •Поляриметрический метод анализа.
- •Рефрактометрический метод анализа.
- •Нефелометрические и турбидиметрические методы анализа.
- •Люминесцентный метод анализа.
Вопрос № 1.17. Массовые расходомеры. Кориолисовый расходомер.
Массовые
расходомеры
более
перспективны, чем объемные. Использует
ускорение Кориолиса воды при сложном
движении (вращательное + поступательное
движение).
Ускорение
Кориолиса направлено перпендикулярно
плоскости, проходящей через вектора
и
,
в ту сторону, откуда кратчайшее совмещение
и
происходит против часовой стрелки.
-
ускорение Кориолиса.
-
сила инерции Кориолиса.
Трубка приводится в автоколебательный режим движения
(незатухающие колебания).
Электромагниты 2 фиксируют моменты прохождения нейтрали.
-
изгибающий момент
S – внутреннее сечение трубы
- вектор угловой скорости все время меняет направление
W – перемещение точек трубы в колебательном режиме.
RX – уравнение изогнутой линии при изгибе трубы
-
круговая частота колебаний трубы
А – амплитуда колебаний
;
С – жесткость трубок при кручении
-
линейная скорость движения
Временной
сдвиг
является выходным сигналом.
Достоинства:
измеряет в единицах массы
во время эксплуатации точность не ухудшается
Недостаток: изогнутая труба может засоряться.
Класс точности 0,15 0,25%
Методы и приборы для измерения состава и свойств веществ.
Все методы начального анализа подразделяются на избирательные и неизбирательные.
К избирательным относятся такие, в которых датчик реагирует на анализируемый компонент и нечувствителен ко всем другим (более универсальны, но редки).
Неизбирательные чувствительны ко всем компонентам смеси. Эти методы используются для псевдобинарных смесей, в которых используется компонент, резко отличающийся по своим свойствам от всех остальных (эти методы значительно более точные).
Ионометрические анализаторы.
Принцип действия основан на измерении потенциала электрода, помещенного в раствор электролита. Используются для регулирования концентрации различных ионов (водорода, натрия, калия, хлора, кислорода), для измерения активности катионов в единицах pH.
Рассмотрим металлический электрод, помещенный в раствор, содержащий катионы: с поверхности электрода катионы металла переходят в раствор, но электрод имеет заряд «–», т.е. этот процесс происходит до состояния насыщения у поверхности электрода. Образуется двойной слой из определенных ионов и противоионов. На электроде происходит скачок потенциала, но он зависит от концентрации ионов, уже содержавшихся в растворе.
Работа изменения концентрации раствора вблизи поверхности электрода определяется:
R – универсальная газовая постоянная
T – температура
Т.к. каждый ион несет заряд, то А может быть выражена:
-
равновесный скачок потенциала
Z – валентность
F – число Фарадея
Приравняв правые части, полуим:
При н.у. первое слагаемое постоянно и для водородного электрода = 0 – стандартный потенциал электрода. Тогда:
-
уравнение Мернста.
В ионометрии используются электроды первого и второго рода.
Электроды первого рода.
Образованы металлом и его катионами, находящимися в растворе, т.е. этот электрод обратим относительно катионов. Используются в качестве измерительных.
Электроды второго рода.
Образованы металлом, его малорастворимой солью и анионами этой соли, находящимися в растворе. Потенциал в них зависит и от катионов и от анионов. Используются в качестве сравнительных.
Рассмотрим диссоциацию воды:
-
ионное произведение воды
При
н.у. для воды
-
характеризует кислотные свойства
раствора
-
характеризует щелочные свойства раствора
Если рН = 7 – нейтральная среда
рН < 7 – кислотная среда
рН > 7 – щелочная среда