Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
При обсуждении вопросов деятельности представителей внеземны.doc
Скачиваний:
4
Добавлен:
23.08.2019
Размер:
419.33 Кб
Скачать

При обсуждении вопросов деятельности представителей внеземных цивилизаций в солнечной системе часто возникают ссылки на гипотезу об искусственности спутников Марса. История этой гипотезы такова. Выдержка из книги И.С. Шкловского «Вселенная Жизнь Разум», издание второе, Москва, 1965 Спутники Марса были открыты только в 1877 г. американским астрономом Холлом на незадолго до этого изготовленном самом большом по тем временам телескопе-рефракторе. С тех шор они неоднократно наблюдались, преимущественно в эпохи противостояния Марса. Ближайший от поверхности планеты спутник, получивший название Фобос, удален на расстояние 9376 км от ее центра. Другой спутник, получивший название Деймос, удален от центра Марса на расстояние 23 500 км. Период обращения Деймоса вокруг Марса равен 30 час. 18 мин., а Фобоса — 7 час. 39 мин. Заметим, что период вращения Марса вокруг своей оси равен 24 час. 37 мин. 23 сек., т. е. он значительно больше периода обращения Фобоса. Это — единственный случай в Солнечной системе (если не считать искусственных спутников Земли), когда период обращения спутника вокруг планеты меньше периода вращения последней вокруг своей оси. Поэтому Фобос восходит на марсианском горизонте на западе, а заходит на востоке. Своеобразное «попятное» движение Фобоса имеет для воображаемого марсианского наблюдателя период в 11 «земных» часов. Заметим, что если бы период обращения спутника вокруг планеты был точно равен периоду ее вращения, он казался бы на марсианском небосклоне неподвижным, причем с половины марсианской поверхности он вообще не был бы виден. Так как период обращения Деймоса вокруг Марса довольно близок к периоду его вращения, для марсианского наблюдателя длительность «деймосовского месяца», исчисляемого, например, от «новодеймосия» до «новодеймосия», будет довольно большой — около 132 часов. Орбиты спутников Марса очень близки к окружности и лежат весьма близко к плоскости экватора Марса. Эксцентриситеты орбит Фобоса и Деймоса равны соответственно 0,017 и 0,003, а углы наклона плоскостей, в которых лежат их орбиты, к плоскости марсианского экватора равны 1,75 и 1 градус соответственно. Звездная величина Фобоса и Деймоса равна (для среднего противостояния Марса) llm,5 и 13m. Если бы не их близость к яркой планете, что сильно осложняет наблюдения, спутники Марса благодаря их довольно большой яркости можно было бы легко наблюдать даже в телескопы умеренных размеров — обстоятельство которое, по-видимому, понимал Свифт. Никаким способом прямыми наблюдениями с Земли нельзя измерить угловые, а следовательно, и линейные размеры Фобоса и Деймоса, так (мак они слишком малы. Существует, однако, косвенный метод, правда довольно грубый. Если предположить, что отражательные свойства поверхностей спутников Марса такие же, как у самого Марса (для которого коэффициент отражения поверхности около 15%), то из наблюдаемой их яркости, учитывая, что они светят отраженным солнечным светом, можно путем вычислений найти, что диаметр Фобоса равен 16 км, а Деймоса — всего лишь 8 км. Это самые маленькие из известных спутников планет Солнечной системы. Заметим, однако, что если бы такие близкие крохотные спутники были у Юпитера, Сатурна и других «внешних» планет, вряд ли их можно было обнаружить. Для воображаемого наблюдателя, находящегося на поверхности Марса, его спутники представлялись бы довольно яркими объектами. Так, например, Фобос имел бы угловые размеры, доходящие до 10 мин. дуги, т. е. 1/3 лунного диска, причем яркость его была бы всего лишь в 25 раз меньше яркости Луны. При таком освещении предметы в марсианскую ночь должны отбрасывать тени. Более удаленный Деймос казался бы с поверхности Марса очень яркой звездой — раз в 10 более яркой, чем Венера, наблюдаемая с Земли. Еще Лоуэлл обратил внимание на то, что ни один из спутников не имеет характерного для самого Марса красного цвета. Новейшие наблюдения подтвердили этот вывод. В 1945 г. американский астроном Шарплес обнаружил в движении Фобоса вокруг Марса одну замечательную особенность. Сравнивая старые пулковские ряды наблюдений спутников Марса, выполненные в свое время Германом Струве, с более поздними рядами наблюдений, он обнаружил, что Фобос движется по своей орбите ускоренно. Величина этого ускорения мала, но все же получается довольно уверенно. Согласно Шарплесу, относительное изменение средней угловой скорости Фобоса  dn/n период его обращения вокруг Марса равно dn/n = + (7,98 +- 0,73) х 10^-12. Знак «плюс» означает, что наблюдается ускорение. В небесной механике изменение какого-либо из элементов орбиты космического тела, происходящее все время в одном направлении (а не меняющееся периодически), называется «вековым». Таким образом, Шарплес обнаружил вековое ускорение в движении Фобоса вокруг Марса. Для Деймоса, более удаленного от поверхности Марса, вековое изменение средней угловой скорости получилось значительно меньшим и, по-видимому, не выходит за пределы ошибок наблюдений. Известно, что наблюдения спутников Mapca – очень трудная задача. Поэтому указанная Шарплесом вероятная ошибка его вычислений может быть и большей. Однако полученная им большая величина dn/n дает основание полагать, что вековое ускорение Фобоса – эффект реальный. Если это вековое ускорение в движении ближайшего к Марсу спутника не учитывать, то уже за несколько десятилетий накапливается заметная ошибка. Для воображаемого наблюдателя, находящегося в центре Марса, истинное положение Фобоса отклонится от вычисленного (в предположении, что векового ускорения нет) за 50 лет на 2 градуса – величина, совершенно недопустимая в небесной механике. Вообще говоря, можно представить себе несколько причин наблюдаемого векового ускорения Фобоса. Перечислим эти причины. а) Влияние тормозящей среды, сопротивляющейся движению Фобоса. Известно, что этот эффект очень сильно действует на искусственные спутники Земли, ограничивая их время существования. б) Приливное трение. По-видимому этот эффект играл значительную роль в эволюции системы Земля-Луна. в) Электромагнитные эффекты. г) Эффекты классической небесной механики. д) Эффекты светового давления. Мы сейчас последовательно рассмотрим возможность объяснения векового ускорения Фобоса перечисленными причинами. Еще в 1954 г. американские астрономы Уиппл и Керр вычислили плотность сопротивляющейся среды, которая могла бы вызвать наблюдаемое вековое ускорение Фобоса. При разных предположениях эта плотность варьировалась в пределах от 3х10^-16 до 5x10^-18 г/см^2. Но при такой плотности Деймос также испытывал бы вековое ускорение, которое могло бы быть наблюдаемо. Так как движение Деймоса не имеет векового ускорения, Уиппл и Керр пришли к выводу, что сопротивляющаяся среда не может объяснить векового ускорения в движении Фобоса. Однако если сопротивляющаяся среда – это марсианская атмосфера (а не межпланетная среда, как почему-то считали Уиппл и Керр), то на расстоянии 23 500 км от центра планеты (радиус почти круговой орбиты Деймоса) ее плотность будет существенно меньше, чем в области орбиты Фобооа. Поэтому аргументация Уиппла и Керра неубедительна и без анализа плотности марсианской атмосферы на больших высотах нельзя делать вывод о несущественности влияния сопротивляющейся среды на движение Фобоса. Проблема физических условий в самых верхних слоях атмосферы Марса представляет самостоятельный интерес. Так как ускорение силы тяжести на Марсе значительно меньше, чем на Земле, и так как можно ожидать наличия ионосферы на этой планете с довольно высокой температурой, то на первый взгляд существование значительной плотности на высоте около 6 тыс. км от поверхности Марса вполне возможно. Хотя атмосферное давление у поверхности Марса составляет всего лишь несколько процентов земного, начиная с высоты 35—40 км плотность марсианской атмосферы будет выше земной. Подробный анализ физических условий в верхних слоях марсианской атмосферы был выполнен недавно американским астрофизиком Чемберлэйном. В своих расчетах он основывался на методах, применявшихся при исследовании верхних слоев земной атмосферы. Надежность этих методов была проверена прямыми измерениями, выполненными на советских и американских искусственных спутниках. … В табл. 4 приводится полученная таким образом модель верхних слоев марсианской атмосферы. Уровень диссипации в марсианской атмосфере находится на высоте 1500 км от его поверхности. Существенно, что в верхних слоях марсианской атмосферы температура должна быть постоянной и близкой к 1100 градусов К. Постоянство температуры в этой области объясняется наличием там молекул СО, составляющих 1-2% полного количества атомов и молекул. Молекулы СО играют в марсианской верхней атмосфере роль своеобразного «термостата». Их колебательные уровни легко возбуждаются. Поэтому повышение температуры более 1100 градусов К приведет к резкому увеличению числа таких возбуждений. Возбужденные молекулы СО будут излучать инфракрасные кванты, которые покинут атмосферу. По причине этой утечки энергии верхняя атмосфера опять остынет до 1100 градусов К. Так как выше уровня h = 1500 км температура постоянна и равна 1100 градусов, то мы можем определить концентрацию частиц на уровне 6000 км при помощи обобщенной барометрической формулы, учитывающей кривизну слоев марсианской атмосферы: … Из этой формулы следует, что даже для самых легких атомов азота концентрация на уровне 6000 км должна быть в 1000 раз меньше, чем на уровне 1500 км, т. е. вокруг Фобоса концентрация частиц атмосферы должна быть меньше 10^4 см^-3, что совершенно недостаточно для его торможения. Другая возможность объяснения векового ускорения Фобоса – это приливной эффект. Так как на Марсе отсутствуют открытые водоемы, приливы могут происходить только в твердой оболочке планеты. Известный английский геофизик Джефрис исследовал этот вопрос в предположении, что вязкость и упругие свойства недр Марса такие же, как и у существующих моделей недр Земли. Его расчеты показали, что. приливы могут объяснить только 0,0001 часть наблюдаемого векового ускорения Фобоса. Вопрос об упругих свойствах и о вязкости планетных недр весьма сложен, и необходимой ясности здесь нет. Так, например, сравнительно недавно Н.Н. Парийский пришел к выводу, что приливной эффект в твердой оболочке Земли (и по аналогии – Марса) значительно превосходит найденное Джефрисом значение. По мнению Н.Н. Парийского, этот эффект существен для объяснения векового движения Луны и мог бы объяснить вековое ускорение Фобоса. Однако мы сейчас приведем доказательство невозможности объяснения векового ускорения Фобоса приливным трением, исходя из совсем других соображений. Допустим, что свойства упругости и вязкости Марса таковы, что вековое ускорение Фобоса объясняется приливным трением. Согласно Джефрису, теоретическое значение векового ускорения спутника, обусловленного приливным трением в твердой оболочке планеты, может быть представлено выражением … Из написанных выше формул и третьего закона Кеплера мы можем найти время приливной эволюции, в течение которого радиус круговой орбиты спутника изменится … Выполнив вычисления, будем иметь t(r<2,15R0)<5x10^8 лет. Но полученное значение для верхней границы интервала времени, прошедшего после образования Фобоса, недопустимо мало, так как 500 млн. лет назад условия на Марсе (который существует, по крайней мере, 4-5 млрд. лет) не могли отличаться от современных. Поэтому образование в столь близкую от нас эпоху спутника около Марса, который получил почти круговую орбиту, практически лежащую в плоскости экватора планеты, совершенно исключается. Остается тогда еще одна возможность — считать, что Фобос образовался на расстоянии 2,15R0 < г < 2,17R0, причем: его период обращения почти в точности был равен периоду вращения Марса. Естественно при этом считать, что и Деймос образовался на том же «критическом» расстоянии, где приливы в твердой оболочке Марса не оказывают заметного влияния на движение спутников. Далее, можно было бы предположить, что по разным причинам спутники были выведены из своих «почти устойчивых» орбит, причем Фобос сместился по направлению к центру Марса, а Деймос — в обратном направлении. При малых смещениях приливные силы, если они, разумеется, существенны, будут очень малы и может пройти весьма большое время, пока у Фобоса г станет меньше, чем, например, 2,1 R0. Однако такая возможность объяснения происхождения спутников Марса нам представляется крайне маловероятной. Ниоткуда не следует, что на расстоянии n = Q (Q – угловая скорость вращения планеты, n – средняя угловая скорость вращения спутника) условия образования спутников являются почему-то особенно благоприятными. Напротив, все другие спутники планет Солнечной системы находятся от планет на относительно больших расстояниях. Совершенно непонятно, почему спутники Марса должны представлять исключение. Нужно еще иметь в виду, что за несколько миллиардов лет период вращения Марса мог существенно измениться. Это делает беспочвенной гипотезу образования его спутников на фиксированном расстоянии, определяемом современным значением периода вращения Марса. Далее, трудно понять, почему Деймос, на которого приливные силы (из-за малости его массы) практически не должны действовать, отошел за время эволюции от орбиты, на которой n = Q (где по предположению он образовался), на целых 3 тыс. км или 0,1 R0. Таким образом, на основании соображений, изложенных выше, можно сделать вывод, что наблюдаемое вековое ускорение Фобоса не может быть обусловлено приливами в твердой оболочке Марса. В принципе возможен электромагнитный механизм торможения Фобоса, который мог бы привести к вековому ускорению его движения. При движении в магнитном поле Марса спутника (который будем считать хорошим проводником) возникает электрическое поле Е = 1/с [vH]. Это поле поляризует спутник, т. е. на противоположных его сторонах возникают заряды различных знаков. Электрическое поле этих зарядов в окружающем спутник пространстве будет того же порядка, что и Е, так что потенциал по отношению к ионам, подлетающим извне, будет х = ЕL, где L – характеристический размер спутника. Значение х в вольтах ЕL = 300vHL. Полагая v = 2х10^5 см/сек, Н = 10^-3э, t = 10^6 см, найдем, что х = 2 в. Поскольку энергия сравнима с тепловой энергией частиц межпланетного газа, можно принять, что положительные ионы как бы «оседают» на отрицательно заряженной поверхности спутника, а все подлетающие электроны отталкиваются. На противоположной стороне спутника, которая заряжена положительно, ионы будут отталкиваться, а часть электронов будет оседать. Тогда ток I будет равен потоку положительных ионов через полусферу. Так как скорость спутника близка к скорости ионов Vi, будем иметь: I = ni Vi e S, где S ~ L^2 – сечение спутника, е — заряд электрона, ni – концентрация ионов. Сила торможения f = 1/c I H L = ni Vi L S H / c, Величина ускорения dv/dt = ni Vi e H / c d, где d плотность спутника. Время торможения будет примерно равно v/ (dv/dt) = 2x10^15 d / ni лет, где мы приняли, что на Марсе на расстоянии 6 тыс. км от поверхности Н = 10^-3 э, что, по-видимому, завышено. Так как ni < 10^5 см^-3, а d = 2,5 г/см^3, то t > 5 x 10^10 лет, т. е. электрическое торможение для проводящего спутника несущественно. … Резюмируя, следует сказать, что электромагнитными силами нельзя объяснить наблюдаемого векового ускорения Фобоса. Можно попытаться объяснить вековое ускорение Фобоса эффектом Пойнтинга-Робертсона, о котором была речь в гл. 16. Однако эффект Пойнтинга-Робертсона, обусловленный как прямым солнечным излучением, так и отраженным от Марса, дает вековое ускорение на 6-8 порядков меньшее, чем наблюдаемое. Наконец, стоит упомянуть о возможном «чисто небесномеханическом» объяснении эффекта векового ускорения Фобоса. Например, возмущения от Солнца и Деймоса в принципе могут привести к появлению долгопериодических членов в планетоцентри-ческой долготе Фобоса. Вовмущения движения спутников Марса Солнцем, а также их взаимные возмущения недавно исследовал М.П. Косачевский. Согласно его вычислениям, взаимные возмущения более значительны, чем солнечные, причем движение Деймоса гораздо сильнее возмущается, чем движение Фобоса. Это вполне понятно, так как Деймос значительно более удален от Марса, чем Фобос. Абсолютные величины возмущений спутников Марса, согласно расчетам Косачевского, очень невелики. Таким образом, все мыслимые механизмы, по-видимому, не в состоянии объяснить замечательную особенность движения этого спутника Марса. Разумеется, остается еще тривиальная возможность считать наблюдения Шарплеоа ошибочными. Однако для этого у нас в настоящее время нет оснований, хотя, конечно, такую возможность следует постоянно иметь в виду. В создавшемся весьма затруднительном положении автор в 1959 г. выдвинул гипотезу радикального и не совсем обычного свойства. Если бы средняя плотность Фобоса была около 10^-3 г/см^3, то его вековое ускорение вполне могло быть объяснено сопротивлением атмосферы Марса. Очень трудно, однако, представить себе естественную субстанцию столь малой плотности. Материал этого спутника должен быть твердым, чтобы силы сцепления препятствовали его постепенному разрушению притяжением Марса. А это исключает значения d < 0,1 г/см^3. В таком случае остается только одна возможность – считать Фобос полым. Но естественное космическое тело не может быть полым. Значит, Фобос (так же как и, по-видимому, Деймос) – искусственный спутник Марса. При этом его масса может быть порядка нескольких сот миллионов тонн. Эту, казалось бы, фантастическую идею, на мой взгляд, стоит обсудить серьезно. Прежде всего, для высокоорганизованных (разумных существ создание таких гигантских спутников принципиально возможно. Вряд ли можно сомневаться, что через несколько сот лет Земля будет иметь спутники размером в несколько километров. Пути решения этой проблемы ясны уже сейчас, а общественная потребность в таких гигантских спутниках, несомненно, будет. Если говорить о серьезной искусственной космической станции – ракетодроме, то ее габариты должны быть существенно больше 100 м (по-видимому, это характерный размер будущих межпланетных ракет). Нужно, кстати, учесть, что из-за сравнительно малого значения силы тяжести задача изготовления гигантского искусственного спутника на Марсе, вообще говоря, могла быть легче, чем на Земле. Кроме того, у Марса нет большого естественного спутника, такого, как наша Луна, так что при освоении космического пространства (неизбежного процесса для всякой неограниченно развивающейся цивилизации) задача изготовления гигантских искусственных спутников должна быть особенно важной. В этой связи заметим, что на Марсе, согласно исследованиям известного американского космохимика Юри, многие сотни миллионов лет назад могло быть значительное количество атмосферного кислорода и обширные океаны, что, конечно, является благоприятным фактором для развития высокоорганизованной жизни Когда на Земле будут запущены гигантские искусственные спутники (а это, несомненно, будет), они, как это можно показать, смогут обращаться на некоторых специально подобранных орбитах многие сотни миллионов лет. Очень может быть, что такие спутники переживут человечество и останутся самыми выдающимися (если не единственными) памятниками его деятельности на Земле, потому что все, что будет построено на Земле, в конечном итоге будет разрушено, перемешано и «снивелировано» в результате тектонической активности нашей планеты. Аналогичное положение, возможно, мы сейчас наблюдаем на Марсе. Наша гипотеза одновременно дает радикальное решение труднейшей проблемы происхождения спутников Марса, перед которой оказались беспомощными все старые и новые космогонические гипотезы Становятся понятными удивительные особенности движения и орбит этих объектов. Фобос мог быть выведен на орбиту много сот миллионов лет назад. Любопытно, что при учете величины ело векового ускорения Фобос при всех мыслимых гипотезах о причине этого явления примерно через 1-2 х 10^7 лет упадет на Марс, в то время как последний существует несколько миллиардов лет. Это обстоятельство, на наш взгляд, является серьезной трудностью для гипотез «естественного» происхождения Фобоса, так как вероятность наблюдать такое событие очень мала. Можно не сомневаться, что в ближайшие десятилетия, когда научная аппаратура, а может быть и люди, будут заброшены на Марс, увлекательная проблема познания природы его спутников будет решена экспериментально. Однако проверка предлагаемой гипотезы может быть сделана, во всяком случае частично, и путем наблюдений с поверхности Земли. Было бы очень важно получить по возможности точные электрофотометрические данные для спутников Марса. Такие наблюдения, выполненные для достаточно продолжительных интервалов времени, позволили бы определить форму этих спутников и особенности их вращения вокруг своих осей. Необычность формы была бы серьезным аргументом в пользу нашей гипотезы об искусственном происхождении спутников Марса. Трудно, например, представить, чтобы естественные космические тела столь малых размеров имели сферическую форму, хотя, с другой стороны, искусственные спутники вовсе не обязаны быть сферическими. Следует, однако, подчеркнуть, что такие наблюдения связаны с очень большими трудностями, так как спутники Марса (и особенно Фобос) можно наблюдать только при их наибольшем угловом удалении от него. Фотографии Фобоса и Деймоса с близкого расстояния могут быть получены при пролете космической ракеты мимо Марса и переданы на Землю с помощью телеметрической аппаратуры Эга задача далеко не простая, так как требует высокой точности наведения ракеты на цель и безупречной работы автоматически работающей фотографической системы. В частности, должна быть обеспечена автоматическая наводка фотографической камеры на спутники. Следует подчеркнуть, что технически эта задача вполне может быть решена в ближайшее десятилетие. После того как эта гипотеза была опубликована (в форме газетного интервью), вокруг нее разгорелась оживленная дискуссия. Большинство специалистов отнеслось к ней скептически, что, разумеется, вполне естественно. По существу ни одного научного аргумента против нее выдвинуто не было. Впрочем, в американской печати появилось сообщение д-ра Клеменса, что будто бы английский астроном Уилкинс, некоторое время работавший в Морской обсерватории в Вашингтоне, показал, что результаты Шарплеса, касающиеся векового ускорения Фобоса, ошибочны. Однако никаких научных публикаций самого Уилкинса после этого не последовало По этому поводу я написал письмо Уилкин-су и получил от него ответ. Он пишет, что никаких новых результатов, касающихся движения спутников Марса, он не получил. Таким образом, утверждения американской прессы были «дезавуированы» самим Уилкинсом. Разумеется, вполне возможно, что результаты Шарплеса окажутся ошибочными, и тогда наша гипотеза потеряет научное основание. Но ведь ошибочность результатов Шарплеса надо доказать. Только на основании новых, весьма точных рядов наблюдений положений спутников Марса можно будет сделать вывод, прав Шарплес или нет. Даже если в результате будущих наблюдений окажется, что векового ускорения в движении Фобоса нет, проведенный анализ имеет определенный интерес для нашей проблемы. Основной смысл моей гипотезы – обратить внимание на то, что деятельность высокоразвитого общества разумных существ может иметь «космические» последствия и создать такие памятники, которые надолго переживут породившую их цивилизацию. Этот вывод, как мы увидим в следующих главах, имеет принципиальное значение для проблемы разумной жизни во Вселенной. Вот какова история гипотезы об искусственности спутников Марса. Через несколько лет были получены новые наблюдения спутников, которые показали, что никакого векового ускорения спутников Марса не существует. После этого И.С. Шкловский от своей гипотезы отказался.

Термин «сакральное» или «иерофаническое время» охватывает различные феномены. Он может обозначать время, в течение которого справляется обряд; может относиться ко времени мифическому, либо восстановленному через посредство ритуала, либо реактуализированному благодаря простому повторению акта, имеющего собственный мифологический архетип; может указывать на космические ритмы, поскольку эти ритмы считаются действием глубинной сакральной сущности, лежащей в основе Космоса023 .

Основными качествами сакрального времени являются нелинейность, периодичность, повторение, вечное настоящее. Сакральное время – время праздников. Период празднества или торжества по своей сути представляет собой особое время не только в том смысле, что он связан с каким-нибудь чрезвычайным событием ( или его воспроизведением в ритуале), но и в том, что он выделен из временного потока повседневности024 . Оно принадлежит не человеку и человек не может использовать его в своих целях. Именно поэтому в праздники запрещается работать. Запрет на работу в праздники не менее значимый элемент празднества, чем «позитивные предписания» – ритуалы. В начале ХХ века местные власти Бессарабии возмущались тем, что «эти праздники отнимают у поселян много рабочего времени в особенности в страдную пору полевых работ»025

Но деление времени на сакральное и профанное проявлялось не только в этой системе запретов. Оно предполагало «коллективизацию времени». Именно с этой позиции, осуждающей «индивидуальное использование времени» в Западной Европе в Средние века осуждалось ростовщичество. Любопытный пример бесознательного осуждения «индивидуализации в распоряжении временем» содержится у В.А.Мошкова: рассказывая о консервативности общественного мнения гагаузов, приводит в пример историю богатого хозяина, не решающегося приобрести часы (опасаясь быть обвиненным в мотовстве)026 . Но дело не в консерватизме, как таковом: в другом месте приводится длинный список того, что гагаузы переняли у немцев – и что покупали – в нем прежде всего усовершенствованные орудия труда027 . Не одобряются именно часы, ибо если это время работы - надо работать, если время отдыхать - надо отдыхать.

Между сакральным и профанным временем нет различий (разве что профанный быт остается паузой между экстатическими состояниями). Во втором случае миф базируется на ценностях и во многом носит иносказательный характер, и переживается как живая реальность непостоянно. То есть, наличествуют циклы демифологизации-ремифологизации.

Для мифологического периода характерно деление мира на два противоположных друг другу времени – сакрального и профанного. Сакральное предполагает формирование исходных основ миропорядка, ключевых архетипов, основных норм поведения призванных регламентировать всю жизнь человека. Ссылка на исходно установленный порядок, на закон предков здесь выступает в качестве основного и универсального способа мотивации и деятельности.

Особое место в мифологической концепции Элиаде отводится понятию времени (и, соответственно, истории). Есть сакральное мифологическое время, в котором творилась космогония, в котором действуют боги и осуществляются мифы. И существует профанное время, соотнесенное с этим сакральным, но более «слабое», чем последнее. Рассказ мифа – это прорыв «священного», равнозначный иерофании (богоявлению). Профанное время исторично. Оно линейно, необратимо и доступно индивидуальной памяти, тогда как мифологическое время сохраняется лишь в коллективной памяти или, точнее, в коллективном бессознательном.

Дело в том, что в этой книге сформулировано и развито самое оригинальное и очень дорогое автору положение о цикличности мифологического и линейности профанного времени.

Также в создании мифа весьма характерна замена причинно-следственных связей прецедентом. Происхождение предмета выдается за его сущность. Научному принципу объяснения противопоставляется в мифе начало во времени. Все многообразие мира выдается за следствие событий далекого прошлого и действие мифических героев, предков, богов. В мифе резко разграничено древнее (сакральное) и современное (профанное) времена. Именно сакральное - это мифологическое время, это эпоха перволюдей, первопредметов и перводействий (огонь, копье, семья и т.д.). Все произошедшее в сакральное время приобретает характер парадигмы (греч. - пример, образец), рассматривается как предмет, образец для современности. Как правило большинство мифов начинаются традиционной заставкой: “Давным давно..”и т.д.

Поэтому миф обычно совмещает в себе два аспекта: рассказ о прошлом (диахронический аспект) и средство объяснения настоящего, а иногда и будущего (синхронический аспект). На основе “исторических” преданий, прецедентов формируется направление этнологических объяснений (греч. Этиа -причина) реальных явлений в окружающей человека среде. Как это произошло? Как это сделано? Почему? и т.д.

Классификация методов научного познания

Понятие метод (от греческого "методос" - путь к чему-либо) означает совокупность приемов и операций практического и теоретического освоения действительности.

Метод вооружает человека системой принципов, требований, правил, руководствуясь которыми он может достичь намеченной цели. Владение методом означает для человека знание того, каким образом, в какой последовательности совершать те или иные действия для решения тех или иных задач, и умение применять это знание на практике.

.... Существует целая область знания, которая специально занимается изучением методов и которую принято именовать методологией. Методология дословно означает "учение о методах". Изучая закономерности человеческой познавательной деятельности, методология вырабатывает на этой основе методы ее осуществления. Важнейшей задачей методологии является изучение происхождения, сущности, эффективности и других характеристик методов познания.

Методы научного познания принято подразделять по степени их общности, т.е. по широте применимости в процессе научного исследования.

Всеобщих методов в истории познания известно два: диалектический и метафизический. Это общефилософские методы. Метафизический метод с середины 19 века начал все больше вытесняться диалектическим методом.

Вторую группу методов познания составляют общенаучные методы, которые используются в самых различных областях науки, т.е. имеют весьма широкий, междисциплинарный спектр применения. Классификация общенаучных методов тесно связана с понятием уровня научного познания.

Различают два уровня научного познания: эмпирический и теоретический. Одни общенаучные методы применяются только на эмпирическом уровне (наблюдение, эксперимент, измерение), другие - только на теоретическом (идеализация, формализация), а некоторые (например, моделирование) - как на эмпирическом, так и на теоретическом уровнях.

Эмпирический уровень научного познания характеризуется непосредственным исследованием реально существующих, чувственно воспринимаемых объектов. На этом уровне осуществляется процесс накопления информации об исследуемых объектах, явлениях природы путем проведения наблюдений, выполнения разнообразных измерений, постановки экспериментов. Здесь производится также первичная систематизация получаемых фактических данных в виде таблиц, схем, графиков и т.п.

Кроме того, уже на втором уровне научного познания - как следствие обобщения научных фактов - возможно формулирование некоторых эмпирических закономерностей.

Теоретический уровень научного исследования осуществляется на рациональной (логической) ступени познания. На данном уровне происходит раскрытие наиболее глубоких, существенных сторон, связей, закономерностей, присущих изучаемым объектам, явлениям.

Теоретический уровень - более высокая ступень в научном познании. Результатами теоретического познания становятся гипотезы, теории, законы.

Выделяя в научном исследовании указанные два различных уровня, не следует, однако, их отрывать друг от друга и противопоставлять. Ведь эмпирический и теоретический уровни познания взаимосвязаны между собой. Эмпирический уровень выступает в качестве основы, фундамента теоретического. Гипотезы и теории формируются в процессе теоретического осмысления научных фактов, статистических данных, получаемых на эмпирическом уровне. К тому же теоретическое мышление неизбежно опирается на чувственно-наглядные образы (в том числе схемы, графики и т.п.), с которыми имеет дело эмпирический уровень познания.

В свою очередь, эмпирический уровень научного познания не может существовать без достижения теоретического кровня. Эмпирическое исследование обычно опирается на определенную теоретическую конструкцию, которая определяет направление этого исследования, обусловливает и обосновывает применяемые при этом методы.

К третьей группе методов научного познания относяится методы, используемые только в рамках исследований какой-то конкретной науки или какого-то конкретного явления. Такие методы именуются частнонаучными.

Каждая частная наука (биология, химия, геология и т.д.) имеет свои специфические методы исследования. При этом частнонаучные методы, как правило, содержат в различных сочетаниях те или иные общенаучные методы познания.

В частнонаучных методах могут присутствовать наблюдения, измерения, индуктивные или дедуктивные умозаключения и т.д. Характер их сочетания и использования находится в зависимости от условий исследования, природы изучаемых объектов. Таким образом, частнонаучные методы не оторваны от общенаучных. Они тесно связаны с ними, включают в себя специфическое применение общенаучных познавательных приемов для изучения конкретной области объективного мира.

Научное познание, его формы и методы

9.1. Специфика науки и научного познания. Эмпирический и теоретический уровни научного познания.

Познавательное отношение человека к миру осуществляется в различных формах - в форме обыденного познания, познания художест- венного, религиозного, наконец, в форме научного познания. Первые три области познания рассматриваются в отличие от науки как внена- учные формы. Научное познание выросло из познания обыденного, но в настоя- щее время эти две формы познания довольно далеко отстоят друг от друга. В чем их главные различия ? 1. У науки свой, особый набор объектов познания в отличие от познания обыденного. Наука ориентирована в конечном счете на поз- нание сущности предметов и процессов, что вовсе не свойственно обыденному познанию. 2. Научное познание требует выработки особых языков науки. 3. В отличие от обыденного познания научное вырабатывает свои методы и формы, свой инструментарий исследования. 4. Для научного познания характерна планомерность, систем- ность, логическая организованность, обоснованность результатов исследования. 5. Наконец, отличны в науке и обыденном познании и способы обоснования истинности знаний. Но что же собой представляет наука? Прежде чем ответить на этот вопрос, необходимо отметить, что ее рождение есть результат истории, итог углубления разделения труда, автоматизации различных отраслей духовной деятельности и духовного производства. Можно сказать, что наука - это и итог познания мира. система проверенных на практике достоверных знаний и в то же время особая область деятельности, духовного производства, производства новых знаний со своими методами, формами, инструментами познания, с це- лой системой организаций и учреждений. Все эти составляющие науки как сложного социального феномена особенно четко высветило наше время, когда наука стала непосредс- твенной производительной силой. Сегодня уже нельзя, как в недавнем прошлом, сказать, что наука - это то, что содержится в толстых книгах, покоящихся на полках библиотек, хотя научное знание оста- ется одним из важнейших компонентов науки как системы. Но эта сис- тема в наши дни представляет собой, во-первых, единство знаний и деятельности по их добыванию, во-вторых, выступает как особый со- циальный институт, занимающий в современных условиях важное место в общественной жизни. Роль и место науки как социального института отчетливо видны в ее социальных функциях. Главные из них - культурно-мировоззрен- ческая функция, функция непосредственной производительной силы, функция социальная. Первая из них характеризует роль науки как важнейшего элемен- та духовной жизни и культуры, играющего особую роль в формировании мировоззрения, широкого научного взгляда на окружающий мир. Вторая функция с особенной силой обнаружила свое действие в наши дни, в обстановке углубляющейся НТР, когда синтез науки, тех- ники и производства стал реальностью. Наконец, роль науки как социальной силы отчетливо проявляется в том, что в современных условиях научные знания и научные методы находят все более широкое применение при решении широкомасштабных проблем социального развития, его программирования и т.д. В насто- ящий период особое место науке принадлежит в решении глобальных проблем современности - экологической, проблемы ресурсов, продо- вольствия, проблемы войны и мира и т.д. В науке отчетливо просматривается ее членение на две большие группы наук - наук естественных и технических, ориентированных на исследование и преобразование процессов природы, и общественных, исследующих изменение и развитие социальных объектов. Социальное познание отличается рядом особенностей, связанных и со спецификой объектов познания, и со своеобразием позиции самого исследователя. Прежде всего в естествознании субъект познания имеет дело с "чистыми" объектами, обществовед - с особыми - социальными объек- тами, с обществом, где действуют субъекты, люди, наделенные созна- нием. В итоге, в частности, в отличие от естествознания здесь весьма ограниченна сфера эксперимента из-за моральных соображений. Второй момент: природа как объект исследования находится пе- ред субъектом, изучающим ее, напротив, обществовед изучает соци- альные процессы, находясь внутри общества, занимая в нем опреде- ленное место, испытывая влияние своей социальной среды. Интересы личности, ее ценностные ориентации не могут не оказывать воздейс- твия на позицию и оценки исследования. Немаловажно и то, что в историческом процессе гораздо большую роль, чем в природных процессах, играет индивидуальное, а законы действуют как тенденции, в силу чего отдельные представители нео- кантианства вообще считали, что социальные науки могут лишь описы- вать факты, но в отличие от естественных наук не могут вести речь о законах. Все это безусловно усложняет исследование социальных процес- сов, требует от исследователя учета этих особенностей, максималь- ной объективности в познавательном процессе, хотя, естественно, это не исключает оценки событий и явлений с определенных социаль- ных позиций, умелого вскрытия за индивидуальным и неповторимым об- щего, повторяющегося, закономерного. Прежде чем переходить к анализу структуры научного познания, отметим его основное назначение и общие целевые установки. Они сводятся к решению трех задач - описанию объектов и процессов, их объяснению и, наконец, предсказанию, прогнозу поведения объектов в будущем. Что же касается архитектуры здания науки, структуры научного познания, то в нем выделяются два уровня - эмпирический и теорети- ческий. Эти уровни не следует смешивать со сторонами познания во- обще - чувственным отражением и рациональным познанием. Дело в том, что в первом случае имеются в виду различные типы познава- тельной деятельности ученых, а во втором -речь идет о типах психи- ческой деятельности индивида в процессе познания вообще, причем оба эти типа находят применение и на эмпирическом, и на теорети- ческом уровнях научного познания. Сами уровни научного познания различаются по ряду параметров: по предмету исследования. Эмпирическое исследование ориенти- ровано на явления, теоретическое - на сущность; по средствам и инструментам познания; по методам исследования. На эмпирическом уровне это наблюде- ние, эксперимент, на теоретическом - системный подход, идеализа- ция и т.д.; по характеру добытых знаний. В одном случае это эмпирические факты, классификации, эмпирические законы, во втором -законы, раскрытие существенных связей, теории. В XVII-XVIII и отчасти в XIX вв. наука еще находилась на эм- пирической стадии, ограничивая свои задачи обобщением и классифи- кацией эмпирических фактов, формулированием эмпирических законов. В дальнейшем над эмпирическим уровнем надстраивается теорети- ческий, связанный со всесторонним исследованием действительности в ее существенных связях и закономерностях. При этом оба вида иссле- дования органически взаимосвязаны и предполагают друг друга в це- лостной структуре научного познания.