
- •2. Опишите основные принципы построения локальных вычислительных сетей. Принципы и проблемы физической передачи данных по линиям связи
- •Проблемы объединения нескольких компьютеров. Классификация и топология сетей.
- •Структуризация как средство построения больших сетей
- •Управление взаимодействием прикладных процессов
- •Основные программные и аппаратные компоненты сети
- •3. Охарактеризуйте классы программного обеспечения компьютерных систем и сетей;
- •7.1. Системное программное обеспечение
- •7.1.1. Операционные системы
- •7.1.2. Сервисные системы
- •7.1.3. Инструментальные программные средства
- •7.2. Прикладное программное обеспечение
- •7.2.1. Прикладные программы для офиса
- •7.2.2. Специализированные корпоративные программные средства
- •Особенности алгоритмов управления ресурсами
- •Особенности аппаратных платформ
- •Особенности областей использования
- •7. Охарактеризуйте функции операционных систем, инсталляцию и конфигурирование.
- •Ос как расширенная машина
- •Ос как система управления ресурсами
- •6. Опишите протоколы обмена в компьютерных сетях и способы решения с их помощью вопросов информационной безопасности. Стек протоколов tcp/ip
- •Структура стека tcp/ip. Краткая характеристика протоколов
- •7. Охарактеризуйте принципы решения задачи маршрутизации в глобальной компьютерной сети.
- •Методы маршрутизации
- •Основные понятия и определения
- •Протокол управления обменом данных tcp/ip
- •Транспортные функции глобальной сети
- •Высокоуровневые услуги глобальных сетей
- •Структура глобальной сети
- •Типы глобальных сетей
- •Глобальные связи на основе выделенных линий
- •Цифровые выделенные линии
- •Технология синхронной цифровой иерархии sonet/sdh
- •Применение цифровых первичных сетей
- •Общие принципы построения современных эвм
- •Принципы построения эвм третьего поколения
- •Принципы построения пэвм
- •Способы формирования структуры пэвм
- •Понятие совместимости и комплексирования в вс.
- •Уровни и средства комплексирования
- •Классификация вычислительных систем
- •Архитектура вс. Параллелизм команд и данных
- •Кластерные архитектуры
- •Организация функционирования вычислительных систем
Способы формирования структуры пэвм
Децентрализация построения и управления вызвала к жизни такие элементы, которые являются общим стандартом структур современных ЭВМ:
модульность построения;
иерархия управления;
магистральность.
Модульность построения предполагает выделение в структуре ЭВМ достаточно автономных, функционально конструктивно законченных устройств (процессор, модуль памяти, накопитель на жестком или гибком магнитном диске).
Модульная конструкция ЭВМ делает ее открытой системой, способной к адаптации и совершенствованию. К ЭВМ можно подключать дополнительные устройства, улучшая ее технические и экономические показатели. Появляется возможность наращивания вычислительной мощи, улучшения структуры путем замены отдельных устройств на более совершенные, изменения и управления конфигурацией системы, приспособления ее к конкретным условиям применения в соответствии с требованиями пользователей.
Модульность структуры ЭВМ требует стандартизации и унификации оборудования, номенклатуры технических и программных средств, средств сопряжения — интерфейсов, конструктивных решений, унификации типовых элементов замены, элементной базы и нормативно-технической документации. Все это способствует улучшению технических и эксплутационных характеристик ЭВМ, росту технологичности их производства.
В современных ЭВМ принцип децентрализации и параллельной работы распространен как на периферийные устройства, так и на сами ЭВМ (процессоры). Появились вычислительные системы (ВС), содержащие несколько вычислителей (ЭВМ или процессоры), работающие согласованно и параллельно.
Внутри самой ЭВМ произошло еще более резкое разделение функций между средствами обработки. Появились отдельные специализированные процессоры, например сопроцессоры, выполняющие обработку чисел с плавающей точкой, матричные процессоры и др.
Децентрализация управления предполагает иерархическую организацию структуры ЭВМ. Устройство управления главного, или центрального, процессора определяет лишь последовательность работ подчиненных модулей и их инициализацию, после чего они продолжают работу по собственным программам управления. Результаты выполнения требуемых операций представляются ими «вверх по иерархии» для правильной координации всех работ.
Иерархический принцип построения и управления характерен не только для структуры ЭВМ в целом, но и для отдельных ее подсистем. Например, по этому же принципу строится система памяти ЭВМ.
Магистральность заключается в том, что подчиненные модули (контроллеры, адаптеры, КВВ) могут в свою очередь использовать специальные шины для обмена информацией.
Стандартизация и унификация привели к появлению иерархии шин и к их специализации. Из-за различий в скоростях работы отдельных устройств в структурах ПК появились:
системная шина — для взаимодействия основных устройств;
локальная шина — для ускорения обмена видеоданными;
периферийная шина — для подключения «медленных» периферийных устройств.
Таким образом, способы формирования структуры не выходят за пределы классической структуры фон Неймана. Их объединяют следующие традиционные признаки :
ядро ЭВМ образует процессор — единственный вычислитель в структуре, дополненный каналами обмена информацией и памятью;
линейная организация ячеек всех видов памяти фиксированного размера;
одноуровневая адресация ячеек памяти, стирающая различия между всеми типами информации;
внутренний машинный язык низкого уровня, при котором команды содержат элементарные операции преобразования простых операндов;
последовательное централизованное управление вычислениями;
особенности организации ввода вывода.
Опишите принципы построения вычислительных систем и их основные классы.
Технические и экономические предпосылки появления ВС.
В связи с кризисом классической структуры ЭВМ (структуры фон Неймана) уменьшаются возможности получения отдельных ЭВМ сверхвысокой производительности.
Развитие вычислительной техники обеспечивается сейчас за счет технологии изготовления элементов (примерно каждые 2 года обновляется парк микропроцессоров, хотя их структура не выходит за рамки классической структуры). Пользователи требуют машины, характеристики которых производство не может обеспечить.
ВС - совокупность нескольких вычислителей, ЭВМ или процессоров, периферийного оборудования, предназначенного для повышения эффективности вычислительного комплекса.
Создание ВС имеет цели:
повышение производительности за счет параллелизма вычисления;
повышение надежности работы и достоверности вычислений;
увеличение и улучшение сервиса в обслуживании пользователя.
Самыми важными предпосылками появления и развития ВС служат экономические факторы. Анализ характеристик ЭВМ различных поколений показал, что в пределах интервала времени, характеризующегося относительной стабильностью элементной базы, связь стоимости и производительности ЭВМ выражается квадратичной зависимостью - "закон Гроша".
Построение же вычислительных систем позволяет значительно сократить затраты, так как для них существует линейная формула:
где:
|
— соответственно стоимость ЭВМ и ВС |
|
— коэффициенты пропорциональности, зависящие от технического уровня развития вычислительной техники; |
|
— производительность ЭВМ и i-го из п комплектующих вычислителей (ЭВМ или процессоров).
|
Критический порог определяется точкой пересечения двух приведенных зависимостей.
Основные принципы построения, закладываемые при создании ВС:
возможность работы в разных режимах;
модульность структуры технических и программных средств, что позволяет совершенствовать и модернизировать вычислительные системы без коренных их переделок;
унификация и стандартизация технических и программных решений;
иерархия в организации управления процессами;
способность систем к адаптации, самонастройке и самоорганизации;
обеспечение необходимым сервисом пользователей при выполнении вычислений.