- •Контрольная работы по «Введению в инженерную деятельность»
- •Содержание
- •Конструирование – один из основных видов инженерной деятельности.
- •Джероламо Кардано – известный инженер, живший в эпоху Возрождения.
- •Совершенствование ракетной техники и зарождение космонавтики.
- •Фролов-Багреев – известный советский шампанист.
- •Синектика как метод активизации решения инженерных задач. Четыре разновидности аналогий.
- •Список литературы
Джероламо Кардано – известный инженер, живший в эпоху Возрождения.
Джерола́мо (Джироламо, Иероним) Карда́но (лат. Hieronymus Cardanus, итал. Girolamo Cardano, Gerolamo Cardano; 24 сентября 1501, Павия — 21 сентября 1576, Рим) — итальянский математик, инженер, философ, медик и астролог.
Учился в университетах Павии и Падуи. Занимался сначала исключительно медициной (получил диплом доктора в 1525 году), но в 1534 году стал профессором математики в Милане. Позже Кардано преподавал математику в Болонье, хотя доходное врачебное занятие не бросил и завоевал репутацию одного из лучших европейских врачей. Преподавал также медицину в Павии. Подрабатывал также составлением астрологических альманахов и гороскопов.
Кардано внёс значительный вклад в развитие алгебры: его имя носит формула Кардано для нахождения корней кубического неполного уравнения вида x3 + ax + b = 0. Он же первым в Европе стал использовать отрицательные корни уравнений. В действительности Кардано не открывал этот алгоритм и даже не пытался приписать его себе. В своём трактате «Великое искусство» («Ars magna») он признаётся, что узнал формулу от Никколо Тартальи, пообещав сохранить его в тайне, однако обещание не сдержал и спустя 6 лет (1545) опубликовал упомянутый трактат. Из него учёный мир впервые узнал о деталях замечательного открытия. Кардано также включил в свою книгу ещё одно открытие, сделанное его учеником Лодовико (Луиджи) Феррари: общее решение уравнения четвёртой степени.
В историю криптографии (наука о методах обеспечения конфиденциальности (невозможности прочтения информации посторонним) и аутентичности (целостности и подлинности авторства, а также невозможности отказа от авторства) информации) Кардано вошёл как изобретатель несложного шифровального устройства, получившего название «решётка Кардано» (квадрат с вырезанными клетками). Опубликована также (посмертно) его «Книга об игре в кости» — исследование по математической теории азартных игр. Это один из первых серьёзных трудов по комбинаторике и теории вероятностей; в нём, однако, Кардано допустил немало ошибок. Разработал метод обучения слепых, сходный с брайлевским.
Кардано также занимался механикой: считается изобретателем карданного вала (конструкция, передающая крутящий момент между валами, пересекающимися в центре карданной передачи и имеющими возможность взаимного углового перемещения. Широко используется в различных областях человеческой деятельности, когда трудно обеспечить соосность вращающихся элементов). В его трудах подробно описано множество механизмов, в том числе его собственные изобретения — например, масляную лампу с автоматической подачей масла и кодовый замок
В области медицины Кардано оставил первое детальное описание тифа, нереализованный проект переливания крови и предположение о том, что причинами инфекционных болезней являются живые существа, невидимые глазом из-за малых размеров.
Совершенствование ракетной техники и зарождение космонавтики.
Создателем космонавтики как науки считается Герман Оберт, впервые доказавший физическую возможность человеческого организма выносить возникающие при запуске ракеты перегрузки, а также состояние невесомости.
10 мая 1897 г К. Э. Циолковский в рукописи «Ракета» исследует ряд задач реактивного движения, где определяет скорость, которую развивает летательный аппарат под воздействием тяги ракетного двигателя, неизменной по направлению, при отсутствии всех других сил; конечная зависимость получила название «формула Циолковского» (статья опубликована в журнале «Научное обозрение» в 1903 г.).
1903 г. К. Э. Циолковский опубликовал работу «Исследование мировых пространств реактивными приборами» — первую в мире, посвященную теоретическому обоснованию возможности осуществления межпланетных полетов с помощью реактивного летательного аппарата — «ракеты». В 1911—1912 опубликована вторая часть этой работы, в 1914 — дополнение. К. Э. Циолковский и независимо от него Ф. А. Цандер пришли к выводам, что космические полеты возможны и на известных уже тогда источниках энергии и указали практические схемы их реализаций (форму ракеты, принципы охлаждения двигателя, использование жидких газов в качестве топливной пары и др.).
Высокая скорость истечения продуктов сгорания топлива (часто большая, чем М10), позволяет использовать ракеты в областях, где требуются сверхбольшие скорости движения, например, для вывода космических аппаратов на орбиту Земли. Максимальная скорость, которая может быть достигнута при помощи ракеты, рассчитывается по |формуле Циолковского, описывающей приращение скорости, как произведение скорости истечения на натуральный логарифм отношения начальной и конечной массы аппарата.
Ракета пока является единственным транспортным средством, способным вывести космический аппарат в космос. Альтернативные способы поднимать космические аппараты на орбиту, такие как «космический лифт», электромагнитные и обычные пушки, пока что находятся на стадии проектирования.
В космосе наиболее ярко проявляется основная особенность ракеты — отсутствие потребности в окружающей среде или внешних силах для своего перемещения. Эта особенность, однако, требует того, чтобы все компоненты, необходимые для создания реактивной силы, находились на борту самой ракеты. Так для ракет, использующих в качестве топлива такие плотные компоненты, как жидкий кислород и керосин, отношение веса топлива к весу конструкции достигает 20/1. Для ракет, работающих на кислороде и водороде, это соотношение меньше — около 10/1. Массовые характеристики ракеты очень сильно зависят от типа используемого ракетного двигателя и закладываемых пределов надёжности конструкции.
Скорость, требуемая для выведения на орбиту космических аппаратов, часто недостижима даже при помощи ракеты. Паразитный вес топлива, конструкции, двигателей и системы управления настолько велик, что не даёт разогнать ракету до нужной скорости за приемлемое время. Задача решается за счёт использования составных многоступенчатых ракет, позволяющих отбросить излишний вес в процессе полёта.
За счёт уменьшения общего веса конструкции и выгорания топлива ускорение составной ракеты с течением времени увеличивается. Оно может немного снижаться лишь в момент сбрасывания отработавших ступеней и начала работы двигателей следующей ступени. Подобные многоступенчатые ракеты, предназначенные для запуска космических аппаратов, называют ракеты-носители.
Используемые для нужд космонавтики ракеты называются ракетами-носителями, так как они несут на себе полезную нагрузку. Чаще всего в качестве ракет-носителей используются многоступенчатые баллистические ракеты. Старт ракеты-носителя происходит с Земли, или, в случае долгого полёта, с орбиты искусственного спутника Земли.
Важным шагом стал запуск с космодрома Байконур первого искусственного спутника Земли в 1957 году СССР — Спутника-1.
Грандиозным свершением и отправной точкой развития пилотируемой космонавтики стал полёт советского космонавта Юрия Гагарина 12 апреля 1961 года. Другое выдающееся событие в области космонавтики — высадка человека на Луну состоялось 21 июля 1969 года. Американский астронавт Нил Армстронг сделал первый шаг по поверхности естественного спутника Земли со словами: «Это маленький шаг для одного человека, но огромный скачок для всего человечества».
