
- •Эксплуатация компрессорных станций магистральных газопроводов введение
- •Глава 1 характеристики природных газов
- •1.1. Исходные понятия и определения
- •Теплоемкость газов
- •Массовая теплоемкость некоторых газов при постоянном (атмосферном) давлении в кДж/ (кг · °с)
- •Смеси газов
- •Физические характеристики компонентов природного газа
- •Теплота сгорания газов
- •Низшая теплота сгорания некоторых компонентов природного газа
- •Пределы взрываемости газовоздушных смесей
- •Пределы и интервал взрываемости газов в смеси с воздухом при температуре 20 °с и давлении 0,1 мПа
- •1.2. Законы идеальных газов. Области их применения
- •Критические параметры некоторых веществ
- •1.3. Технологические характеристики природных газов и их компонентов
- •1.4. Термодинамическое обеспечение решения энерготехнологических задач трубопроводного транспорта природных газов
- •Значение коэффициента Джоуля-Томсона ( ) для метана в зависимости от температуры и давления
- •Значения параметров природного газа с содержанием метана 97% в зависимости от температуры при среднем давлении 5 мПа
- •Глава 2 назначение и устройство компрессорных станций
- •2.1. Особенности дальнего транспорта природных газов
- •2.2. Назначение и описание компрессорной станции
- •2.3. Системы очистки технологического газа на кс
- •2.4. Технологические схемы компрессорных станций
- •2.5. Назначение запорной арматуры в технологических обвязках кс
- •2.6. Схемы технологической обвязки центробежного нагнетателя кс
- •2.7. Конструкции и назначения опор, люк-лазов и защитных решеток в обвязке гпа
- •2.8. Системы охлаждения транспортируемого газа на компрессорных станциях
- •2.9. Компоновка газоперекачивающих агрегатов на станции
- •2.10. Система импульсного газа
- •2.11. Система топливного и пускового газа на станции
- •2.12. Система маслоснабжения кс и гпа, маслоочистительные машины и аппараты воздушного охлаждения масла
- •2.13. Типы газоперекачивающих агрегатов, применяемых на кс
- •Уральский турбомоторный завод (узтм), г. Екатеринбург
- •Невский завод им. Ленина (нзл), г.Санкт-Петербург
- •Первый Бриенский завод (Чехия), г.Брно
- •Показатели злектроприводных агрегатов
- •Показатели газомотокомпрессоров
- •Структура парка гпа в системе оао "Газпром"
- •Показатели перспективных газотурбинных установок нового поколения
- •2.14. Нагнетатели природного газа. Их характеристики
- •2.34. Неполнонапорный одноступенчатый нагнетатель 370-18 агрегата гтк-10-4 производства нзл:
- •Характеристики центробежных нагнетателей для транспорта природных газов
- •2.15. Электроснабжение кс Электроснабжение газотурбинных кс и гпа
- •Электроснабжение гпа
- •Электроснабжение электроприводной кс
- •Резервные аварийные электростанции
- •Система питания постоянным током автоматики и аварийных насосов смазки гпа, автоматики зру-10 кВ, аварийного освещения
- •2.16. Водоснабжение и канализация кс
- •Теплоснабжение кс
- •2.17. Организация связи на компрессорных станциях
- •2.18. Электрохимзащита компрессорной станции
- •2.19. Грозозащита компрессорной станции
- •Глава 3 эксплуатация газоперекачивающих агрегатов с газотурбинным приводом
- •3.1. Организация эксплуатации цехов с газотурбинным приводом
- •3.2. Схемы и принцип работы газотурбинных установок
- •3.3. Подготовка гпа к пуску
- •3.4. Проверка защиты и сигнализации гпа
- •Защита по давлению масла смазки
- •Защита по погасанию факела
- •Защита по осевому сдвигу роторов
- •Защита по перепаду между маслом уплотнения и газом в полости нагнетателя (защита "масло-газ")
- •Защита от превышения температуры газа
- •Защита по превышению частоты вращения роторов твд, тнд и турбодетандера
- •Защита по температуре подшипников
- •Система защиты от вибрации
- •3.5. Пуск гпа и его загрузка
- •3.6. Обслуживание агрегата и систем кс в процессе работы
- •3.7. Подготовка циклового воздуха для гту
- •3.8. Очистка осевого компрессора в процессе эксплуатации
- •3.9. Устройство для подогрева всасывающего циклового воздуха. Антиобледенительная система
- •3.10. Противопомпажная защита цбн
- •1’’’ - Режим работы нагнетателя с малыми возмущениями. I - линия контроля помпажа;
- •3.11. Работа компрессорной станции при приеме и запуске очистных устройств
- •3.12. Особенности эксплуатации гпа при отрицательных температурах
- •3.13. Система пожаротушения гпа и ее эксплуатация
- •3.14. Вибрация, виброзащита и вибромониторинг гпа
- •3.15. Нормальная и аварийная остановка агрегатов
- •3.16. Остановка компрессорной станции ключом аварийной остановки станции (каос)
- •Глава 4 эксплуатация газоперекачивающих агрегатов с электроприводом
- •4.1. Характеристика приводов, основные типы эгпа и их устройство
- •Техническая характеристика гпа с электроприводом
- •4.2. Системы избыточного давления и охлаждения статора и ротора электродвигателя
- •4.3. Системы масло-смазки и масло-уплотнения эгпа, их отличие от систем гту
- •4.4. Редукторы - мультипликаторы, применяемые на электроприводных гпа
- •4.5. Особенности подготовки к пуску и пуск гпа
- •4.6. Обслуживание эгпа во время работы
- •4.7. Регулирование режима работы гпа с электроприводом
- •4.8. Применение на кс электроприводных гпа с регулируемой частотой вращения
- •4.9. Эксплуатация вспомогательного оборудования и систем компрессорного цеха
- •4.10. Совместная работа электроприводного и газотурбинного компрессорных цехов
- •Глава 1. Характеристики природных газов
- •Глава 2. Назначение и устройство компрессорных станций
- •Глава 3. Эксплуатация газоперекачивающих агрегатов с газотурбинным приводом
- •Глава 4. Эксплуатация газоперекачивающих агрегатов с электроприводом
Система защиты от вибрации
Защита агрегата от вибрации осуществляется с помощью датчиков, размещаемых на корпусах подшипников ГПА. При этом вибрация измеряется в трех направлениях: вертикальном, поперечном и осевом. Сигнал поступает от пьезодатчика. Повышенная вибрация может привести к нарушению условий смазки и разрушению подшипников, задеваниям вращающихся деталей в прочной части и другим аварийным ситуациям.
Имеется два уровня вибрации. При
достижении первого уровня включается
предупредительная сигнализация
(сигнализация срабатывает при значении
виброскорости
=
7,1 мм/с). При достижении второго уровня,
когда вибрация становится более 11,2
мм/с, срабатывает аварийная сигнализация
и происходит остановка агрегата.
Кроме перечисленных выше основных систем защиты применяются и другие:
- по минимальному и максимальному уровню масла в маслобаке агрегата;
- защита по аварийной остановке от кнопки АО;
- защита по давлению топливного газа;
- защита по предотвращению работы вала турбокомпрессора в диапазоне резонансных частот вращения 2500-4300 об/мин (более 5 мин);
- защита нагнетателя от помпажа;
- защита по разряжению на всасе осевого компрессора.
Проверку защиты в обязательном порядке и в соответствии с Правилами технической эксплуатации проводят при подготовке ГПА к пуску. Проверку проводит комиссия в составе сменного инженера, инженера службы КИПиА, машиниста ТКЦ, работники КИПиА с оформлением специального протокола приемки-сдачи защиты.
3.5. Пуск гпа и его загрузка
Пуск ГПА является самым ответственным этапом в организации эксплуатации компрессорной станции. Это связано с тем, что при пуске ГПА одновременно включается в работу очень большое количество систем как самого агрегата, так и вспомогательных систем КС, от подготовки и правильной настройки которых зависит, насколько надежно этот пуск осуществляется. В процессе трогания роторов ГТУ начинают расти динамические нагрузки, возникают термические напряжения в узлах и деталях от прогрева ГТУ. Рост теплового состояния ведет к изменению линейных размеров лопаток, дисков, изменению зазоров в проточной части, тепловому расширению трубопроводов. При трогании ротора в первый момент не обеспечивается устойчивый гидравлический клин в смазочной системе. Идет процесс перехода роторов с рабочих колодок на установочные. Компрессор ГПА близок к работе в зоне помпажа. Через нагнетатель осуществляется большой расход газа при низкой степени сжатия, что ведет к большим скоростям, особенно трубопроводов рециркуляции, что вызывает их вибрацию. В процессе запуска до выхода на режим "малого газа" валопроводы некоторых типов ГПА проходят через обороты, совпадающие с частотой собственных колебаний, т.е. через резонансные обороты.
На начальном этапе пуска вследствие неустановившегося режима или нарушений в работе системы регулирования может происходить и заброс температуры.
Из сказанного можно сделать вывод, что процесс запуска характеризуется очень большим количеством и сочетанием неустановившихся режимов работы, а также периодического их изменения.
Правильные действия персонала при пуске агрегата - один из главных показателей уровня эксплуатации компрессорной станции. Нарушение технологии ремонта, нарушение регулировок узлов и деталей, любое неправильное действие в процессе пуска, сбои в работе защиты скажутся на пуске и обязательно приведут к нарушению алгоритма пуска и его сбою, а порою, при грубых нарушениях, и к аварийному ремонту ГТУ. Любые сбои на этапе запуска могут оказать существенное влияние и на эксплуатационные показатели в процессе работы машины.
Время пуска зависит от типа ГПА. Для стационарных ГПА оно составляет 20-30 мин, для ГПА с авиационным приводом 5-10 мин.
Для стационарных оно больше по причине необходимости обеспечения равномерного прогрева корпусных узлов и деталей ГТУ. Эти узлы и детали имеют большую массу, поэтому для обеспечения их равномерного прогрева и одинакового расширения необходимо больше времени.
Пуск ГПА осуществляется с помощью пусковых устройств. В качестве основных устройств применяются турбодетандеры, работающие в основном на перепаде давления природного газа, который предварительно очищается и редуцируется до необходимого давления. Турбодетандеры установлены на всех стационарных и некоторых авиационных ГПА. Иногда в качестве рабочего тела применяется сжатый воздух. Схема обвязки пускового устройства и топливного газа показана на рис. 3.7.
Рис. 3.7. Принципиальная схема системы топливного и пускового газа:
ТГ - топливный газ; ПГ - пусковой газ; ВЗК - воздухозаборная камера; ТД - турбодетандер; ОК - осевой компрессор; КС - камера сгорания; ТВД - турбина высокого давления; ТНД - турбина низкого давления; Н - нагнетатель; РЕГ - регенератор
Кроме турбодетандера, широкое применение нашли электростартеры, которые применяются на судовых ГПА. Ряд агрегатов оборудован системой гидравлического запуска. Мощность пусковых устройств составляет 0,3-3 % мощности ГПА в зависимости от типа ГПА - авиационных или стационарных.
Рассмотрим типовой алгоритм автоматического запуска стационарного ГПА с полнонапорным нагнетателем. При пуске ГПА можно выделить три этапа. На первом этапе раскрутка ротора осевого компрессора и турбины высокого давления происходит только благодаря работе пускового устройства, а сам алгоритм протекает следующим образом. После нажатия кнопки "Пуск" включается пусковой насос масло-смазки и насос масло-уплотнения. Открывается кран № 4 и при открытом кране № 5 осуществляется продувка контура нагнетателя, в течение 15-20 с. После закрытия крана № 5 и роста давления в нагнетателе до перепада 0,1 МПа на кране № 1 производятся открытие крана № 1, закрытие № 4 и открытие агрегатного крана № 6. При этом произошло заполнение контура нагнетателя, и такой пуск называется пуском ГПА с заполненным контуром.
Далее включается валоповоротное устройство, вводится в зацепление шестерня турбодетандера, открываются гидравлический клапан № 13 и стопорный клапан системы регулирования ГПА. Затем открывают кран № 11 и закрывается № 10 и отключается валоповоротное устройство. Агрегат начинает вращаться от турбодетандера.
Первый этап раскрутки заканчивается открытием крана № 12 и закрытием крана № 9.
На втором этапе раскрутка ротора турбокомпрессора производится совместно турбодетандером и турбиной. При достижении оборотов турбокомпрессора, достаточных для зажигания смеси ~ 400 1000 об/мин, включается система зажигания и открывается кран № 15, подающий газ на запальное устройства камеры сгорания. О нормальном зажигании сигнализирует датчик-фотореле; через 2-3 с открывается кран № 14 и начинает осуществляться подача газа на дежурную горелку. Примерно через 1-3 мин после набора температуры ~ 150-200 °С заканчивается "первый" этап прогрева, открывается регулирующий клапан на величину 1,5-2 мм и начинается второй этап прогрева, который продолжается ~ 10 мин. Затем происходит постепенное увеличение оборотов турбины высокого давления за счет открытия газорегулирующего клапана. При достижении оборотов ~ 40 45 % от номинала турбина выходит на режим самоходности; закрываются краны № 13 и 11, открывается кран № 10. При выходе из зацепления муфты турбодетандера заканчивается второй этап раскрутки ротора.
Рис. 3.8. Алгоритм пуска агрегата ГТК-10 по времени:
I - включение ПМН, МНУ; открытие крана № 4; закрытие крана № 5; открытие крана № 1 и 2; закрытие крана № 4;
II - включение муфты турбодетандера, открытие крана № 13, включение ВПУ, открытие стопорного крана и крана № 11; включение турбодетандера, отключение ВПУ, срабатывание РДВ, открытие крана № 12, включение запала (зажигание);
III - прогрев агрегата на дежурной горелке 2-3 мин; IV - открытие РК, прогрев 1 мин;
V - отключение турбодетандера закрытием крана № 13, вывод из зацепления муфты турбодетандера, закрытие крана № 11.
Дальнейшее открытие РК с интервалом 1 мин для ступенчатого прогрева ГТУ
На третьем этапе происходит дальнейший разгон ротора турбокомпрессора путем постепенного увеличения подачи газа в камеру сгорания. При этом закрываются антипомпажные клапаны осевого компрессора, турбоагрегат переходит работать с пусковых насосов на основные, приводимые во вращение уже от роторов агрегата. При увеличении частоты вращения до величины, равной частоте вращения других нагнетателей цеха, открывается кран № 2 и закрывается агрегатный кран № 6, включается табло "Агрегат в работе". Алгоритм пуска агрегата ГТК-10-4 во времени схематично показан на рис. 3.8.
Пуск агрегата запрещается:
- при неисправности любой, хотя бы одной защиты на ГПА;
- при не до конца собранных деталях и трубопроводов агрегата;
- при повышенном перепаде масла на фильтрах, неудовлетворительном качестве масла, наличии утечек масла смазки и масла уплотнения;
- при неустранении дефектов, обнаруженных на ГПА, до вывода в ремонт;
- при вынужденной и аварийной остановках до устранения причины, вызвавшей остановку;
- при неисправности системы пожаротушения и контроля загазованности, а также при обнаружении промасленных участков газоходов и воздуховодов.