
- •Кафедра физики физика
- •1. Информация о дисциплине
- •1.1. Предисловие
- •Содержание дисциплины «Физика» и виды учебной работы
- •1.2.1. Содержание дисциплины «Физика» по гос
- •1.2.2. Объем дисциплины и виды учебной работы по курсу физики
- •Раздел 1. Физические основы механики (19 час.)
- •1.1. Элементы кинематики материальной точки и вращательного движения твердого тела
- •1.3. Элементы динамики вращательного движения твердого тела
- •1.4. Элементы механики жидкости и газа
- •Раздел 2. Молекулярная (статистическая) физика и термодинамика (15,5 час)
- •2.1. Кинетические явления и теория идеальных газов
- •3.6. Электромагнитная индукция
- •3.7. Уравнения Максвелла
- •Раздел 4. Физика колебаний и волн (15,5 час.)
- •4.3. Волновые процессы
- •Раздел 5. Волновая и квантовая оптика (15,5 час)
- •5.1. Волновые свойства света.
- •5.2. Квантовая теория излучения
- •Раздел 6. Квантовая физика (15,5 час.)
- •2.2.2. Тематический план для заочной формы обучения
- •2.2.3. Тематический план для заочно-ускоренной формы обучения
- •2.3. Структурно-логическая схема дисциплины
- •2.4. Временной график изучения курса физики
- •2.5. Практический блок
- •2.5.1. Практические занятия
- •2.5.1.1. Практические занятия для очно-заочной формы обучения
- •2.5.2. Лабораторные работы
- •2.5.2.1. Лабораторные работы для очно-заочной, заочной и заочной ускоренной форм обучения
- •Информационные ресурсы дисциплины
- •Библиографический список
- •3.2. Опорный конпект по дисциплине “физика”
- •Раздел 1. Физические основы механики (19 час.)
- •. Элементы кинематики материальной точки и вращательного движения твёрдого тела
- •1.1.1. Скорость.
- •Ускорение
- •1.1.3. Кинематика вращательного движения
- •1.2. Динамика материальной точки и системы материальных точек
- •1.2.1.Законы Ньютона
- •1.2.2. Силы в природе и технике
- •1.2.3. Закон сохранения импульса
- •1.2.4. Работа силы. Мощность
- •Мощность
- •1.2.5. Механическая энергия
- •1.2.6. Закон сохранения механической энергии
- •1.3. Элементы динамики вращательного движения твердого тела
- •1.3.1. Момент силы
- •1.3.2. Момент импульса
- •1.3.3. Основное уравнение динамики вращательного движения
- •1.3.4. Момент инерции
- •1.3.5. Закон сохранения момента импульса
- •1.3.6. Работа и кинетическая энергия при вращательном движении
- •1.4. Элементы механики жидкости и газа
- •1.5. Элементы релятивистской физики
- •Раздел 2. Молекулярная (статистическая) физика и термодинамика (15,5 час)
- •2.1. Кинетические явления и теория идеальных газов
- •2.1.1. Уравнение состояния идеального газа. Изопроцессы.
- •2.1.2. Основное уравнение молекулярно-кинетической теории
- •2.2. Основы классической статистической физики
- •2.3. Явления переноса неравновесных состояниях
- •2.4. Основы термодинамики
- •2.4.1. Внутренняя энергия
- •2.4.2. Работа
- •2.4.3. Теплота. Теплоёмкость газов
- •2.4.4. Первое начало термодинамики
- •Адиабатный процесс
- •2.4.5. Второе начало термодинамики
- •2.4.6. Тепловые машины
- •2.5. Реальные газы и жидкости
- •Раздел 3. Электричество и магнетизм (19 час.)
- •3.1. Электрическое поле в вакууме
- •3.1.1. Напряжённость электростатического поля.
- •3.1.2. Потенциал электростатического поля
- •3.1.3. Теорема Гаусса и её применение для расчёта электростатических полей
- •3.2. Электрическое поле в диэлектриках
- •3.3. Проводники в электростатическом поле
- •Энергия электростатического поля
- •3.4. Стационарные токи
- •3.4.1. Электрический ток и его характеристики
- •3.4.2. Закон Ома для однородного участка цепи
- •3.4.3. Электродвижущая сила источника тока. Закон Ома для неоднородного участка цепи
- •3.4.4. Работа и мощность тока. Закон Джоуля-Ленца
- •3. 5. Магнитное поле в вакууме и в веществе
- •3.5.1. Вектор магнитной индукции.
- •3.5.2. Магнитное поле постоянного тока
- •3.5.3. Частицы и токи в магнитном поле. Частицы в магнитном поле. Сила Лоренца
- •Поток вектора магнитной индукции
- •3.6. Электромагнитная индукция
- •3.6.1. Явление и основной закон электромагнитной индукции
- •3.6.2. Энергия магнитного поля
- •3.7. Уравнения Максвелла
- •Раздел 4. Физика колебаний и волн (15,5 час)
- •4.1. Механические колебания
- •4.1.1. Гармонические колебания
- •4.1.2. Сложение колебаний
- •Сложение колебаний одного направления
- •Сложение взаимно перпендикулярных колебаний
- •4.2. Электромагнитные колебания и переменный ток
- •4.2.1. Свободные электромагнитные колебания
- •4.3. Волновые процессы
- •4.3.1. Упругие волны
- •4.3.2. Электромагнитные волны
- •Раздел 5. Волновая и квантовая оптика
- •5.1. Волновые свойства света
- •5.1.1. Понятие об интерференции. Когерентность волн
- •5.1.2. Условия интерференционных максимумов и минимумов
- •5.1.3. Интерференция при отражении от тонких пластинок
- •5.1.4. Дифракция света
- •Дифракционная решётка
- •Дифракция от пространственной решётки
- •5.2.Квантовая теория излучения
- •5.2.1. Характеристики теплового излучения
- •5.2.2. Законы Стефана-Больцмана и Вина
- •5.2.3. Квантовая гипотеза Планка. Формула Планка
- •Раздел 6. Квантовая физика. (15,5 час)
- •6.1. Элементы квантовой механики
- •6.2. Элементы физики атома
- •6.2.2. Теория водородоподобных атомов
- •6.3.1. Состав и характеристики атомного ядра
- •6.3.2. Ядерные реакции
- •Глоссарий
- •Массовое число– это число нуклонов (протонов и нейтронов) в атомном ядре. Массовое число равно округленной до целого числа относительной атомной массе элемента.
- •Эквипотенциальная поверхность - поверхность, во всех точках которой потенциал электрического поля имеет одинаковое значение
- •4. Блок контроля освоения дисциплины
- •Методические указания к выполнению контрольных работ
- •4.2. Контрольная работа № 1
- •4.2.1. Примеры решения задач
- •4.2.2. Задание на контрольную работу № 1
- •4.3. Контрольная работа № 2
- •4.3.1. Примеры решения задач
- •Используя формулы (2) и (1), получаем
- •4.3.2. Задание на контрольную работу № 2
- •4.4. Некоторые сведения, необходимые для решения задач
- •1. Некоторые физические постоянные (округленные значения)
- •2. Некоторые астрономические величины
- •3. Некоторые физические постоянные (округленные значения)
- •4. Множители и приставки для образования десятичных кратных и
- •5. Греческий алфавит
- •4.5. Текущий контроль (тестовые задания)
- •4.5.1. Тренировочный тест №1 (к разделам 1 и 2)
- •4.5.2. Тренировочный тест №2 (к разделу 3)
- •4.5.3. Тренировочный тест № 3 (к разделам 4, 5, 6)
- •4.5.4. Правильные ответы на тренировочные тесты
- •4.6. Вопросы для подготовки к зачёту Физические основы механики
- •Молекулярная (статистическая) физика и термодинамика
- •Электричество и магнетизм
- •Физика колебаний и волн
- •Волновая и квантовая оптика
- •Квантовая физика
- •191186, Санкт-Петербург, ул. Миллионная, 5
6.2.2. Теория водородоподобных атомов
Для объяснения стабильности атома и дискретности атомных спектров Н.Бор предложил теорию, в основе которой лежат два постулата.
Первый постулат
Бора.
Существуют такие стационарные состояния
атома, находясь в которых он не излучает
энергию. Стационарным
состояниям атома соответствуют
определенные орбиты, по которым движутся
электроны. При движении по стационарным
орбитам электроны не излучают энергию,
хотя их движение является ускоренным.
Дискретному набору разрешенных орбит
соответствует дискретный набор
разрешенных значений энергии
.
Второй постулат Бора. При переходе атома из одного стационарного состояния в другое атом испускает или поглощает световой квант, частота которого равна
,
(6.3)
где
– постоянная Планка, (
энергии стационарных состояний атома).
Правило квантования орбит. В стационарном состоянии атома электрон, двигаясь по круговой орбите, должен иметь квантованные значения момента импульса, удовлетворяющие условию
,
(6.4)
n
– называется главным квантовым числом,
.
Правило квантования
орбит (6.4) позволяет найти значение
энергии электрона, движущегося по
стационарной орбите с определенным
значением главного квантового числа.
По второму закону Ньютона для электрона,
движущегося по круговой орбите радиуса
.
.
(6.5)
Рассматривая уравнение движения (6.5) совместно с условием квантования (6.4), находим радиусы стационарных орбит.
,
где
5,310–11
м – есть
радиус первой боровской орбиты.
Энергия электрона,
движущегося по круговой орбите радиуса
,
есть сумма его кинетической энергии
и потенциальной энергии электростатического
взаимодействия
.
Полная энергия
электрона равна
.
(6.6)
Выражение (6.6) есть формула Бора для уровней энергии атома водорода на n-ой стационарной орбите. Эта формула описывает уровни энергии стационарных состояний электрона в водородоподобных системах и объясняет закономерности в спектре водородоподобных атомов.
Несмотря на некоторые успехи в описании атома водорода, теория Бора не может считаться серьёзной теорией. Она просто неверна. Однако она дала мощный толчок развитию квантовой механики.
Квантовая теория позволяет точно описать все свойства атомов и веществ. Для этого необходимо составить уравнение Шредингера для электрона в атоме, решив его найти волновую функцию, а с её помощью найти все характеристики атома или другой системы.
6.3. Элементы физики атомного ядра |
При изучении ядра и элементарных частиц были открыты фундаментальные законы природы и созданы теории, открывшие путь для создания единого взгляда на природу от микромира до космоса. Это позволило получить новые виды энергии (деление ядер, синтез ядер). Ядерная энергетика, развиваясь, занимает всё большее место в энергетическом балансе мира.
Теория атомного ядра базируется на результатах экспериментов, а также на других разделах физики, таких как теория относительности, квантовая механика.