Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лабораторный практикум_Механика_молекулярка.doc
Скачиваний:
17
Добавлен:
19.08.2019
Размер:
2.96 Mб
Скачать

Метод наименьших квадратов

Если некоторая физическая величина зависит от другой величины, то эту зависимость можно исследовать, измеряя y при различных значениях x. В результате измерений получается ряд значений:

;

.

По данным такого эксперимента можно построить график зависимости . Полученная кривая дает возможность судить о виде функции . Однако постоянные коэффициенты, которые входят в эту функцию, остаются неизвестными. Оптимальный подход к решению подобных задач возможен на основе применения метода наименьших квадратов.

Суть метода наименьших квадратов состоит в том, что наивероятнейшими значениями аргументов искомой аналитической зависимости будут те, при которых сумма квадратов отклонений экспериментальных значений функции от значений самой функции y, т.е. является наименьшей.

На практике этот метод наиболее часто (и наиболее просто) используется в случае линейной зависимости, т.е. когда или .

Линейная зависимость очень широко распространена в физике. И даже когда зависимость нелинейная, обычно стараются строить график так, чтобы получить прямую линию. Например, если предполагают, что показатель преломления стекла n связан с длиной λ световой волны соотношением , то на графике строят зависимость n от .

Для начала рассмотрим зависимость (прямая, проходящая через начало координат). Составим величину – сумму квадратов отклонений экспериментальных точек от прямой

.

Величина всегда положительна и оказывается тем меньше, чем ближе к прямой лежат экспериментальные точки. Метод наименьших квадратов утверждает, что для k следует выбирать такое значение, при котором имеет минимум

или

.

(15)

Вычисление показывает, что среднеквадратичная ошибка определения величины k при этом равна

.

(16)

Теперь можно рассмотреть более трудный случай, когда точки должны удовлетворить формуле .

Задача состоит в том, чтобы по имеющемуся набору значений найти наилучшие значения a и b.

Составляя квадратичную форму , равную сумме квадратов отклонений точек от прямой

определяют значения a и b, при которых имеет минимум

,

.

Совместное решение этих уравнений дает

,

(17)

.

(18)

Среднеквадратичные ошибки определения a и b равны

,

(19)

.

(20)

При обработке результатов измерения этим методом удобно все данные сводить в таблицу, в которой предварительно подсчитываются все суммы, входящие в формулы (15) – (20). Формы этих таблиц приведены в рассматриваемых ниже примерах.

Пример 1. Исследовалось основное уравнение динамики вращательного движения (прямая, проходящая через начало координат). При различных значениях момента M измерялось угловое ускорение ε некоторого тела. Требуется определить момент инерции этого тела. Результаты измерений момента силы и углового ускорения занесены во второй и третий столбцы таблицы 2.

Таблица 2. Результаты эксперимента

n

1

1.44

0.52

2.0736

0.7488

0.039432

0.001555

2

3.12

1.06

9.7344

3.3072

0.018768

0.000352

3

4.59

1.45

21.0681

6.6555

0.006693

4

5.90

1.92

34.8100

11.3280

0.002401

5

7.45

2.56

55.5025

19.0720

0.073725

0.005435

123.1886

41.1115

0.016436

Используя линейную зависимость

,

по формуле (15) определяем

,

откуда .

Для определения среднеквадратичной ошибки воспользуемся формулой (16)

.

По формуле (14) имеем

.

Задавшись надежностью , по таблице коэффициентов Стьюдента для , находим и определяем абсолютную ошибку

.

Относительная погрешность

.

Окончательно результат можно записать в виде:

, .

Пример 2. Вычислить температурный коэффициент сопротивления металла по методу наименьших квадратов. Сопротивление зависит от температуры по линейному закону

.

Свободный член определяет сопротивление при температуре 0° C, а угловой коэффициент – произведение температурного коэффициента на сопротивление .

Результаты измерений и расчетов приведены в таблице 3.

Таблица 3. Результаты эксперимента

n

1

23

1.242

3948.028

0.007673

58.8722

2

59

1.326

720.0278

12.4959

3

84

1.386

3.361111

93.1506

4

96

1.417

10.16667

103.3611

14.40617

107.898

5

120

1.512

34.16667

1167.361

51.66

0.021141

446.932

6

133

1.520

47.16667

2224.694

71.6933

27.4556

515

8.403

8166.833

21.5985

746.804

85.8333

1.4005

По формулам (17), (18) определяем

,

.

Отсюда:

.

Найдем ошибку в определении . Так как , то по формуле (14) имеем:

.

Пользуясь формулами (19), (20) имеем

,

.

Тогда

.

Задавшись надежностью , по таблице коэффициентов Стьюдента для , находим и определяем абсолютную ошибку

.

Относительная погрешность

.

Окончательно результат можно записать в виде:

при , .