- •Механика и молекулярная физика
- •Раздел 1. Подготовка, выполненИе и оформление отчета по лабораторнЫм рабоТам 6
- •Раздел 2. Обработка результатов измерений 9
- •Раздел 3. Лабораторные работы по механике и молекулярНой физиКе 26
- •Введение
- •Раздел 1. Подготовка, выполненИе и оформление отчета по лабораторнЫм рабоТам Подготовка к лабораторному практикуму
- •Правила выполнения и оформления лабораторных работ
- •Раздел 2. Обработка результатов измерений Виды измерений
- •Классификация ошибок
- •Обработка результатов прямого измерения
- •Округление результатов
- •Обработка результатов косвенного измерения
- •Метод наименьших квадратов
- •Раздел 3. Лабораторные работы по механике и молекулярНой физиКе Лабораторная работа № 1
- •Цели и задачи работы
- •Теоретическая часть
- •Штангенциркуль.
- •Микрометр.
- •Определение плотности однородного тела
- •Порядок выполнения работы
- •Определение плотности параллелепипеда
- •Определение плотности цилиндра (шара)
- •Контрольные вопросы
- •Лабораторная работа № 2
- •Цели и задачи работы
- •Теоретическая часть
- •Момент инерции, теорема Штейнера
- •Метод трифилярного подвеса
- •Приборы и принадлежности
- •Порядок выполнения работы
- •Определение момента инерции ненагруженного диска
- •Определение момента инерции сплошного цилиндра относительно оси, проходящей через центр масс тела
- •Проверка теоремы Штейнера
- •Проверка зависимости момента инерции от распределения массы тела относительно оси вращения
- •Контрольные вопросы
- •Лабораторная работа № 3
- •Цели и задачи работы
- •Теоретическая часть
- •3.2.1. Ускорение силы тяжести
- •3.2.2. Описание установки
- •Приборы и принадлежности
- •Порядок выполнения работы
- •3.4.1. Определение ускорения силы тяжести
- •Контрольные вопросы
- •Лабораторная работа № 4
- •Цели и задачи работы
- •Теоретическая часть
- •4.2.1. Основное уравнение динамики вращательного движения, момент силы, момент инерции
- •4.2.2. Маятник Обербека
- •Приборы и принадлежности
- •Порядок выполнения работы
- •4.4.1. Проверка зависимости углового ускорения от момента силы при постоянном моменте инерции
- •4.4.2. Проверка зависимости момента инерции грузов от расстояния до оси вращения
- •Контрольные вопросы
- •Лабораторная работа № 5
- •Цели и задачи работы
- •Теоретическая часть
- •5.2.1. Математический маятник
- •5.2.2. Физический маятник
- •5.2.3. Описание лабораторной установки
- •Приборы и принадлежности
- •Порядок выполнения работы
- •5.4.1. Определение ускорения свободного падения при помощи математического маятника
- •5.4.2. Определение момента инерции физического маятника
- •5.4.3. Определение момента инерции физического маятника в зависимости от распределения массы
- •Контрольные вопросы
- •Лабораторная работа № 6
- •Цели и задачи работы
- •Теоретическая часть
- •6.2.1. Закон Гука
- •6.2.2. Описание лабораторной установки
- •Приборы и принадлежности
- •Порядок выполнения работы
- •Контрольные вопросы
- •Лабораторная работа № 7
- •Цели и задачи работы
- •Теоретическая часть
- •7.2.1. Теплоемкость, коэффициент Пуассона
- •7.2.2. Описание и теория метода
- •Приборы и принадлежности
- •Порядок выполнения работы
- •Контрольные вопросы
Лабораторная работа № 6
Определение модуля Юнга по растяжению стальной проволоки
Цели и задачи работы
Цель работы:
Ознакомление студентов с пределами применимости закона Гука.
Задачи работы:
Экспериментальная проверка закона Гука.
Определение модуля Юнга по растяжению проволоки.
Определение погрешности измерений.
Теоретическая часть
6.2.1. Закон Гука
Под действием внешних сил реальные тела изменяют свои размеры и форму, т.е. происходит изменение взаимного положения частиц (молекулы, атомы) тела, связанное с их перемещением относительно друг друга. Это явление носит название деформации. Различают основные виды деформации – растяжение, сжатие, сдвиг, кручение, изгиб. В случае одноосного растяжения цилиндрического образца элементарной деформацией является удлинение.
Деформации могут быть упругими и неупругими. Упругими называют деформации, при которых тело полностью восстанавливает свою первоначальную форму и размеры после прекращения действия силы. Если внешняя сила велика и перемещает частицы настолько, что их взаимодействия не могут вернуть частицы в исходные положения после прекращения действия внешней силы, то деформация называется неупругой.
Деформация выражается в относительных единицах. Количественной мерой, характеризующий степень деформации, является относительная деформация. Относительным изменением длины (относительное удлинение) называется величина
|
(1) |
где
– начальная длина образца, l
– длина образца после растяжения.
Упругую деформацию тел описывают законом Гука:
если к концу стержня приложена растягивающая сила F, то его относительное удлинение пропорционально этой силе и обратно пропорционально площади поперечного сечения S
,
где
– коэффициент упругости, зависящий от
рода материала, E
–модуль упругости или модуль Юнга.
Сила F, приходящаяся на единицу площади S сечения образца, называется нормальным напряжением
|
(2) |
Тогда с учетом введенных обозначений закон Гука можно записать в виде
или
|
(3) |
Из формулы (3) видно, что модуль Юнга численно равен напряжению, которое возникло бы в образце при изменении длины образца вдвое (т.е. относительном удлинении образца равном 1).
Закон
Гука справедлив при малых деформациях,
не достигающих предела упругости, выше
этого предела зависимость
становится нелинейной. Если напряжение
превосходит предел пластичности, то
деформации становятся необратимыми
(не исчезают после снятия напряжения).
При напряжениях, превышающих предел
прочности, материал разрушается.
Из
уравнения (2) следует, что при упругих
деформациях абсолютное удлинение прямо
пропорционально приложенной силе,
т.е.
.
Зная размеры испытуемого образца,
приложенную силу и относительное
удлинение, можно вычислить модуль Юнга
|
(4) |
Модуль
Юнга можно определить также из графика
зависимости
.
Так как
линейно зависит от F,
то тангенс угла наклона прямой
,
согласно формуле (4), есть
.
Тогда
|
(5) |
