Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лабораторная работа№16.doc
Скачиваний:
2
Добавлен:
19.08.2019
Размер:
818.69 Кб
Скачать

6. Специальные приемы микроскопии:

  • измерение размеров малых объектов,

  • микропроекция, микрофотография,

  • метод фазового контраста,

  • метод темного поля, ультрамикроскопия.

1. Измерение размеров малых объектов.

Определение величины микроскопируемого предмета делается с помощью нанесенных на стеклянную пластинку масштабных шкал, называемых окулярным и объектным микрометрами.

Окулярный микрометр помещают между линзами окуляра так, чтобы его шкала находилась в плоскости промежуточного изображения, образуемого объективом, При этом в окуляр наблюдается изображение шкалы, совмещенное с изображением микроскопируемого предмета. Учитывая цену деления шкалы микрометра, можно определить размер этого изображения, даваемого объективом, а разделив полученные данные на известное увеличение объектива Коб - действительные размеры предмета.

Если цена деления окулярного микрометра неизвестна, то ее можно определить с помощью объектного микрометра с известной ценой деления (обычно 0,01 мм). Объектный микрометр помещается на место препарата и в окуляр наблюдается совмещенное изображение обеих шкал.

2. Микропроекция и микрофотография.

Мнимый характер изображения в микроскопе обусловлен тем, что промежуточное действительное изображение, образуемое объективом, располагается ближе переднего фокуса окуляра. Если это условие нарушить, например, перевернуть окуляр так, что изображение, которое дает объектив, окажется дальше фокусного расстояния окуляра, то последний будет давать действительное изображение, которое может быть спроецировано на экран или фотопленку. Способ наблюдения на экране действительного изображения предмета называется микропроекцией. Обычно при этом микроскоп ставят горизонтально, и предмет освещают сильным источником света.

Фотографирование полученного таким образом действительного изображения называется микрофотографией. Обычно при этом употребляется специальная фотонасадка к микроскопу, которая представляет собой фотокамеру, надеваемую на окулярный конец тубуса микроскопа.

3. Метод фазового контраста служит для получения изображений прозрачных и бесцветных объектов, невидимых при наблюдении по методу светлого поля. К числу таких объектов относятся, например, живые неокрашенные животные ткани.

Метод основан на том, что даже при очень малых различиях в показателях преломления разных элементов препарата световая волна, проходящая через них, претерпевает разные изменения по фазе (приобретает т. н. фазовый рельеф). Эти фазовые изменения, не воспринимаемые непосредственно ни глазом, ни фотопластинкой, с помощью специального оптического устройства преобразуются в изменения амплитуды световой волны, т. е. в изменения яркости («амплитудный рельеф»), которые уже различимы глазом или фиксируются на фоточувствительном слое. Другими словами, в получаемом видимом изображении распределение яркостей (амплитуд) воспроизводит фазовый рельеф. Такое изображение называется фазово-контрастным.

Рис.3. Метод фазового контраста

На рис.3 в переднем фокусе конденсора 3 устанавливается апертурная диафрагма 2, отверстие которой имеет форму кольца. Её изображение возникает вблизи заднего фокуса объектива 5, и там же устанавливается т. н. фазовая пластинка 6, на поверхности которой имеется кольцевой выступ или кольцевая канавка, называемая фазовым кольцом. Фазовая пластинка может быть помещена и не в фокусе объектива (часто фазовое кольцо наносят прямо на поверхность одной из линз объектива), но в любом случае не отклоненные в препарате 4 лучи от осветителя 1, дающие изображение диафрагмы 2, должны полностью проходить через фазовое кольцо, которое значительно ослабляет их (его делают поглощающим) и изменяет их фазу на /4 ( – длина волны света). В то же время лучи, даже ненамного отклоненные (рассеянные) в препарате, проходят через фазовую пластинку, минуя фазовое кольцо (штриховые линии), и не претерпевают дополнительного сдвига фазы. С учётом фазового сдвига в материале препарата полная разность фаз между отклоненными и неотклонёнными лучами оказывается близкой к 0 или /2, и в результате интерференции света в плоскости изображения 4' препарата 4 они заметно усиливают или ослабляют друг друга, давая контрастное изображение структуры препарата. Отклоненные лучи имеют значительно меньшую амплитуду по сравнению с неотклонёнными, поэтому ослабление основного пучка в фазовом кольце, сближая значения амплитуд, также приводит к большей контрастности изображения. Метод позволяет различать малые элементы структуры, чрезвычайно слабо контрастные в методе светлого поля. Прозрачные частицы, сравнительно не малые по размерам, рассеивают лучи света на столь небольшие углы, что эти лучи проходят вместе с неотклонёнными через фазовое кольцо. Для подобных частиц фазово-контрастный эффект имеет место только вблизи их контуров, где происходит сильное рассеяние.

4. Метод темного поля, ультрамикроскопия.

Метод тёмного поля в проходящем свете (рис.3) применяется для получения изображений прозрачных неабсорбирующих объектов, невидимых при освещении по обычными методами. Свет от осветителя 1 и зеркала 2 направляется на препарат конденсором специальной конструкции – т. н. конденсором тёмного поля 3.

П о выходе из конденсора основная часть лучей света, не изменившая своего направления при прохождении через прозрачный препарат, образует пучок в виде полого конуса и не попадает в объектив 5 (который находится внутри этого конуса). Изображение в микроскопе. создаётся лишь небольшой частью лучей, рассеянных микрочастицами находящегося на предметном стекле 4 препарата внутрь конуса, которые затем проходят через объектив. В поле зрения 6 на тёмном фоне видны светлые изображения элементов структуры препарата, отличающихся от окружающей среды показателем преломления. У крупных частиц видны только светлые края, рассеивающие лучи света. При этом методе по виду изображения нельзя определить, прозрачны

Рис.3. Метод темного поля в проходящем

свете

частицы или непрозрачны, больший или меньший показатель преломления они имеют по сравнению с окружающей средой.

Метод ультрамикроскопии, основан на том же принципе, что и метод темного поля (препараты в ультрамикроскопах освещаются перпендикулярно направлению наблюдения). Этот метод даёт возможность обнаружить (но не «наблюдать» в буквальном смысле слова) чрезвычайно мелкие частицы, размеры которых лежат далеко за пределами разрешающей способности наиболее сильных микроскопов. С помощью иммерсионных ультрамикроскопов удаётся зарегистрировать присутствие в препарате частиц размером до 210-9 м. Однако определить форму и точные размеры таких частиц с помощью этого метода невозможно: их изображения представляются наблюдателю в виде дифракционных пятен, размеры которых зависят не от размеров и формы самих частиц, а от апертуры объектива и увеличения микроскопа. Т. к. подобные частицы рассеивают очень мало света, то для их освещения требуются чрезвычайно сильные источники света, например угольная электрическая дуга. Ультрамикроскопы применяются главным образом в коллоидной химии.

Гипотеза де Бройля.

Опыты по дифракции электронов и других частиц

Важным этапом в создании квантовой механики явилось уста­новление волновых свойств микрочастиц. Идея о волновых свой­ствах частиц была первоначально высказана как гипотеза фран­цузским физиком Луи де Бройлем (1924)1. Эта гипотеза появи­лась благодаря следующим предпосылкам.

1 Гипотеза де Бройля была сформулирована до опытов, подтверждаю­щих волновые свойства частиц. Де Бройль об этом позднее, в 1936 г. писал так: «...не можем ли мы предположить, что и электрон так же двойстве­нен, как и свет? На первый взгляд такая идея казалась очень дерзкой. Ведь мы всегда представляли себе электрон в виде электрически заряженной материальной точки, которая подчиняется законам классической динами­ки. Электрон никогда не проявлял волновых свойств, таких, Скажем, ка­кие проявляет свет в явлениях интерференции и дифракции. Попытка приписать волновые свойства электрону, когда этому нет никаких экспе­риментальных доказательств, могла выглядеть как ненаучная фантазия».

В физике в течение многих лет господствовала теория, соглас­но которой свет есть электромагнитная волна. Однако после ра­бот Планка (тепловое излучение), Эйнштейна (фотоэффект) и др. стало очевидным, что свет обладает корпускулярными свойст­вами.

Чтобы объяснить некоторые физические явления, необходимо рассматривать свет как поток частиц — фотонов. Корпускуляр­ные свойства света не отвергают, а дополняют его волновые свой­ства. Итак, фотон элементарная частица, движущаяся со скоростью света, обладающая волновыми свойствами и име­ющая энергию е = hv, где vчастота световой волны.

Логично считать, что и другие частицы — электроны, нейтро­ны также обладают волновыми свойствами.

Выражение для импульса фотона рф получается из известной формулы Эйнштейна е = тс2 и соотношений е = hv и р. = тс:

(23.1)

где с — скорость света в вакууме, λ, — длина световой волны. Эта формула была

использована де Бройлем и для других микрочастиц -массой т, движущихся со скоростью и:

р = ти =h/λ откуда

(23.2)

По де Бройлю, движение частицы, например электрона, опи­сывается волновым процесс-

сом с характеристической длиной вол­ны Я,, в соответствии с формулой (23.2). Эти волны называют

вол­нами де Бройля.

Гипотеза де Бройля была столь необычной, что многие круп­ные физики-современники не

придали ей какого-либо значения. Несколькими годами позже эта гипотеза получила экспери-

мен­тальное подтверждение: была обнаружена дифракция электро­нов.

Найдем зависимость длины волны электрона от ускоряющего напряжения U электрического

поля, в котором он движется. Из­менение кинетической энергии электрона равно работе сил поля:

Выразим отсюда скорость v и, подставив ее в (23.2), получим

(23.3)

Для получения пучка электронов с достаточной энергией, ко­торый можно зафиксировать, например, на экране осциллографа, необходимо ускоряющее напряжение порядка 1 кВ. В этом случае из (23.3) находим Я, = 0,4 • 10~10 м, что соответствует длине волны рентгеновского излучения.

Дифракция рентгеновских лучей наблюдается на кристаллических телах; следовательно, для диф­ракции электронов необходимо также использовать кристаллы.

К. Дэвиссон и Л. Джермер впервые наблюдали дифракцию электронов на монокристалле никеля, Дж. П. Томсон и независи­мо от него П. С. Тартаковский — на металлической фольге (поли­кристаллическое тело). На рис. 23.1 изображена электронограм-ма — дифракционная картина, полученная от взаимодействия электронов с поликристаллической фольгой. Сравнивая этот ри­сунок с рис. 19.21, можно заметить сходство дифракции электро­нов и рентгеновских лучей.

Способностью дифрагировать обладают и другие частицы, как заряженные (протоны, ионы и др.), так и нейтральные (нейтро­ны, атомы, молекулы).

Аналогично рентгеноструктурному анализу можно применять дифракцию частиц для оценки степени упорядоченности располо­жения атомов и молекул вещества, а также для измерения пара­метров кристаллических решеток. В настоящее время широкое распространение имеют методы электронографии (дифракция электронов) и нейтронографии (дифракция нейтронов).

Может возникнуть вопрос: что происходит с отдельными час­тицами, как образуются максимумы и минимумы при дифракции отдельных частиц?

Опыты по дифракции пучков электронов очень малой интен­ сивности, т. е. отдельных частиц, показали, что при этом электрон не «размазывается» по разным направ­ лениям, а ведет себя как целая частица. Однако вероятность отклонения элект­ рона по отдельным направлениям в ре­ зультате взаимодействия с объектом дифракции различна. Наиболее вероят­ но попадание электронов в те места, ко­ торые по расчету соответствуют макси­ мумам дифракции, менее вероятно их попадание в места минимумов. Таким образом, волновые свойства присущи не только коллективу электронов, но и каждому электрону в отдельности. Рис23.1

Электронный микроскоп.

Понятие об электронной оптике

Волновые свойства частиц можно использовать не только для дифракционного структурного анализа, но и для получения увеличенных изображений предмета.

Открытие волновых свойств электрона сделало возможным со­здание электронного микроскопа. Предел разрешения оптическо­го микроскопа (21.19) определяется в основном наименьшим зна­чением длины волны света, воспринимаемого глазом человека. Подставив в эту формулу значение длины волны де Бройля (23.3), найдем предел разрешения электронного микроскопа, в котором изображение предмета формируется электронными пучками:

(23.4

Видно, что предел разрешения г электронного микроскопа за­висит от ускоряющего напряжения U, увеличивая которое можно добиться, чтобы предел разрешения был значительно меньше, а разрешающая способность значительно больше, чем у оптическо­го микроскопа.

Электронный микроскоп и его отдельные элементы по своему назначению подобны оптическому, поэтому воспользуемся анало­гией с оптикой для объяснения его устройства и принципа дейст­вия. Схемы обоих микроскопов изображены на рис. 23.2 — оп­тический; б — электронный).

В оптическом микроскопе носителями информации о предмете АВ являются фотоны, свет. Источником света обычно служит лампа накаливания 1 . После взаимодействия с предметом (погло­щение, рассеяние, дифракция) поток фотонов преобразуется и со­держит информацию о предмете. Поток фотонов формируется с помощью линз: конденсора 3, объектива 4, окуляра 5. Изображе­ние AjBj регистрируется глазом 7 (или фотопластинкой, фотолю-минесцирующим экраном и т. д.).

В электронном микроскопе носителем информации об образце являются электроны, а их источником — подогреваемый катод 1. Ускорение электронов и образование пучка осуществляется фоку­сирующим электродом и анодом — системой, называемой элек­тронной пушкой 2. После взаимодействия с образцом (в основном рассеяние) поток электронов преобразуется и содержит информа­цию об образце. Формирование потока электронов происходит

Рис. 23.2

под воздействием электрического поля (система электродов и кон­денсаторов) и магнитного (система катушек с током). Эти системы называют электронными линзами по аналогии с оптическими линзами, которые формируют световой поток (3 — конденсорная; 4 — электронная, служащая объективом; 5 — проекционная). Изображение регистрируется на чувствительной к электронам фотопластинке или катодолюминесцирующем экране 6.

Чтобы оценить предел разрешения электронного микроскопа, подставим в формулу (23.4) ускоряющее напряжение U = 100 кВ и угловую апертуру и порядка 10 2 рад (приблизительно такие уг­лы используют в электронной микроскопии). Получим г ~ 0,1 нм; это в сотни раз лучше, чем у оптических микроскопов. Примене­ние ускоряющего напряжения, большего 100 кВ, хотя и повыша­ет разрешающую способность, но сопряжено с техническими сложностями, в частности происходит разрушение исследуемого объекта электронами, имеющими большую скорость. Для биоло­гических тканей из-за проблем, связанных с приготовлением об­разца, а также с его возможным радиационным повреждением, предел разрешения составляет около 2 нм. Этого достаточно, что-

бы увидеть отдельные молекулы. На рис. 23.3 показаны нити бел­ка актина, имеющие диаметр примерно 6 нм. Видно, что они со­стоят из двух спирально закрученных цепей молекул белка.

Укажем некоторые особенности эксплуатации электронного микроскопа. В тех частях его, где пролетают электроны, должен быть вакуум, так как в противном случае столкновение электронов с молекулами воздуха (газа) приведет к искажению изображения. Это требование к электронной микроскопии усложняет процедуру исследования, делает аппаратуру более громоздкой и дорогой. Ва­куум искажает нативные свойства биологических объектов, а в ря­де случаев разрушает или деформирует их.

Для рассматривания в электронном микроскопе пригодны очень тонкие срезы (толщина менее 0,1 мкм), так как электроны сильно поглощаются и рассеиваются веществом.

Для исследования поверхностной геометрической структуры клеток, вирусов и других микрообъектов делают отпечаток их по­верхности на тонком слое пластмассы (реплику). Обычно предва­рительно на реплику в вакууме напыляют под скользящим (ма­лым к поверхности) углом слой сильно рассеивающего электроны тяжелого металла (например, платины), оттеняющий выступы и впадины геометрического рельефа.

К достоинствам электронного микроскопа следует отнести боль­шую разрешающую способность, позволяющую рассматривать крупные молекулы, возможность изменять при необходимости ус­коряющее напряжение и, следовательно, предел разрешения, а также сравнительно удобное управление потоком электронов с по­мощью магнитных и электрических полей.


Рис. 23.3


Наличие волновых и корпускулярных свойств как у фотонов, так и у электронов и других частиц, позвол яет ряд положений и

законов оптики распространить и на описание движения заря­женных частиц в электрических и магнитных полях.

Эта аналогия позволила выделить как самостоятельный раздел электронную оптику — область физики, в которой изучается структура пучков заряженных частиц, взаимодействующих с электрическими и магнитными полями. Как и обычную оптику, электронную можно подразделить на геометрическую (лучевую) и волновую (физическую).

В рамках геометрической электронной оптики возможно, в ча­стности, описание движения заряженных частиц в электриче­ском и магнитном полях, а также схематическое построение изо­бражения в электронном микроскопе (см. рис. 23.2, б).

Подход волновой электронной оптики важен в том случае, ког­да проявляются волновые свойства заряженных частиц. Хорошей иллюстрацией этому является нахождение разрешающей способ­ности (предела разрешения) электронного микроскопа, приведен­ное в начале параграфа

.

10