
- •2.Кардиоцикл, его структура, изменение давления и объема крови в полостях сердца в различные фазы кардиоцикла. Систолический и минутный объем крови. Тоны сердца, их происхождение, места выслушивания.
- •3.Физиологические свойства и особенности миокарда. Современные представления о субстрате, природе и градиенте автоматии. Потенциал действия проводящей системы сердца.
- •5.Векторная теория возбуждения в сердце, генез экг. Физиологический анализ экг.
- •6.Внутрисердечные механизмы регуляции.
- •7.Внесердечные механизмы регуляции (гуморальные, нервные).
- •8.Гормональная функция сердца и эндотелия сосудов. Роль оксида азота и эндотелина.
- •9.Рефлекторная регуляция деятельности сердца и сосудов. Рефлексогенные зоны сердца и сосудов.
- •10.Основные законы гемодинамики, использование их для объяснения движения крови по сосудам. Линейная и объемная скорость кровотока в различных отделах системы кровообращения.
- •11.Функциональная классификация кровеносных сосудов. Факторы, обеспечивающие движение крови по сосудам высокого и низкого давления.
- •12.Виды кровяного давления. Кровяное давление в различных отделах системы кровообращения. Факторы, определяющие его величину. Методы исследования кровяного давления.
- •13.Артериальный и венный пульс, их происхождение. Анализ сфигмограммы и флебограммы.
- •14.Физиологические особенности кровообращения в миокарде
- •15.Физиологические особенности кровообращения в мозге. Гематоэнцефалический барьер
- •16.Механизмы регуляции органного кровообращения.
10.Основные законы гемодинамики, использование их для объяснения движения крови по сосудам. Линейная и объемная скорость кровотока в различных отделах системы кровообращения.
Наука, изучающая движение крови в сосудистой системе, получила название гемо-динамики. Она является частью гидродинамики — раздела физики, изучающего движение жидкостей.
Согласно законам гидродинамики, количество жидкости Q, протекающее через любую трубу, прямо пропорционально разности давлений в начале (Pi) и в конце {Рг) трубы и обратно пропорционально сопротивлению (R) току жидкости:
Если применить это уравнение к сосудистой системе человека, то следует иметь в виду, что давление в конце данной системы, т. е. в месте впадения полых вен в сердце, близко к нулю. В этом случае уравнение можно записать так:
где: Q — количество крови, изгнанное сердцем в минуту; Р — величина среднего давления в аорте; R — величина сосудистого сопротивления.
Из этого уравнения следует, что P=Q-R, т.е. давление (Р) в устье аорты прямо пропорционально объему крови, выбрасываемому сердцем в артерии в минуту (Q) и величине периферического сопротивления (R). Давление в аорте (Р) и минутный объем сердца (Q) можно измерить непосредственно. Зная эти две величины, вычисляют периферическое сопротивление — важнейший показатель состояния сосудистой системы.
Периферическое сопротивление сосудистой системы складывается из множества отдельных сопротивлений каждого сосуда. Любой из таких сосудов можно уподобить трубке, сопротивление которой (R) определяется по формуле Пуазейля:
где I — длина трубки; v — вязкость протекающей в ней жидкости; я — отношение окружности к диаметру; г — радиус трубки.
Сосудистая система состоит из множества отдельных трубок, соединенных параллельно и последовательно. При последовательном соединении трубок их суммарное сопротивление равно сумме сопротивлений каждой трубки:
При параллельном соединении трубок их суммарное сопротивление вычисляют по формуле:
Точно определить сопротивление сосудов по этим формулам невозможно, так как геометрия сосудов изменяется вследствие сокращения сосудистых мышц. Вязкость крови также не является величиной постоянной. Например, если кровь протекает через сосуды диаметром меньше 1 мм, вязкость крови значительно уменьшается. Чем меньше диаметр сосуда, тем меньше вязкость протекающей в нем крови. Это связано с тем, что в крови наряду с плазмой имеются форменные элементы (эритроциты и др.), которые располагаются в центре потока. Пристеночный слой представляет собой плазму, вязкость которой намного меньше вязкости цельной крови. Чем тоньше сосуд, тем большую часть площади его поперечного сечения занимает слой с минимальной вязкостью, что уменьшает общую величину вязкости крови. Теоретический расчет сопротивления капилляров невозможен, так как в норме открыта только часть капиллярного русла, остальные капилляры являются резервными и открываются по мере усиления обмена веществ в тканях.
Из приведенных уравнений видно, что наибольшей величиной сопротивления должен обладать капилляр, диаметр которого 5—7 мкм. Однако огромное количество капилляров включено в ток крови параллельно. Поэтому их суммарное сопротивление меньше, чем суммарное сопротивление артериол.
Основное сопротивление току крови возникает в артериолах. Систему артерий и артериол называют сосудами сопротивления, или резистивными сосудами.
Отличительной особенностью характеристики сердечно-сосудистой системы на современном этапе является требование выражать все составляющие ее параметры количественно. Геометрические (табл. 9.1) и гидродинамические (табл. 9.2) характеристики системы кровообращения свидетельствуют о том, что аорта представляет собой трубку диаметром 1,6—3,2 см с площадью поперечного сечения 2,0—3,5 см2, постепенно разветвляющуюся на 109 капилляров, площадь поперечного сечения каждого из которых равна 5 • 10~7 см2.
Радиус усредненного капилляра может составлять 3 мкм, длина — около 750 мкм (хотя диапазон реальных значений довольно велик). Площадь поверхности стенки каждого усредненного капилляра равна 15 000 мкм2, а площадь поперечного сечения — 30 мкм2. Поскольку доказано, что обмен происходит и в посткапиллярных венулах, можно допускать, что общая обменная поверхность мельчайшего сосуда большого круга составляет 25 000 мкм2. Общее число функционирующих капилляров у человека массой 70 кг должно быть порядка 40 000 млн., тогда общая обменная площадь поверхности капилляров должна составлять около 1000 м2.
В сосудах различают скорость кровотока объемную и линейную.
Объемная скорость кровотока — количество крови, протекающее через поперечное сечение сосуда в единицу времени. Объемная скорость кровотока через сосуд прямо пропорциональна давлению крови в нем и обратно пропорциональна сопротивлению току крови в этом сосуде.
Линейная скорость кровотока отражает скорость продвижения частиц крови вдоль сосуда и равна объемной скорости, деленной на площадь сечения кровеносного сосуда. Линейная скорость различна для частиц крови, продвигающихся в центре потока и у сосудистой стенки. В центре сосуда линейная скорость максимальна, а около стенки сосуда она минимальна в связи с тем, что здесь особенно велико трение частиц крови о стенку.