
- •Та вимірювальна техніка
- •1.1. Фізична величина - основне поняття метрології
- •1.1.1 Систематизація фізичних величин
- •1.1.2 Основне рівняння вимірювання
- •1.2 Класифікація вимірювань
- •1.3 Засоби вимірювальної техніки
- •1.3.1 Вимірювальні пристрої
- •1.3.2. Засоби вимірювання
- •1.4. Методи вимірювань
- •1.5 Похибки вимірювань
- •1.5.1 Систематичні похибки і методи їх вилучення
- •1.5.2 Випадкові похибки
- •1.5.3 Оцінка випадкових похибок прямих вимірювань
- •1.5.4 Оцінка випадкових похибок опосередкованих вимірювань
- •1.6 Властивості засобів вимірювань
- •1.6.1 Статичні метрологічні характеристики
- •1.6.2 Похибки засобів вимірювань
- •1.7 Повірка засобів вимірювальної техніки
- •1.8 Державна система забезпечення єдності вимірювань
- •Контрольні питання
- •2.2. Магнітоелектричні прилади
- •2.2.1. Магнітоелектричний вимірювальний перетворювач
- •2.2.2. Магнітоелектричні амперметри
- •2.2.3. Магнітоелектричні вольтметри
- •2.2.4. Магнітоелектричні гальванометри
- •2.2.5. Магнітоелектричні омметри
- •2.2.6. Випрямні прилади
- •2.2.7. Термоелектричні прилади
- •2.3. Електромагнітні прилади
- •2.3.1. Електромагнітний вимірювальний перетворювач
- •2.3.2. Електромагнітні амперметри та вольтметри
- •2.4. Електродинамічні прилади
- •2.4.1. Електродинамічний вимірювальний перетворювач
- •2.4.2. Амперметри, вольтметри і ватметри електродинамічної системи
- •2.4.3. Феродинамічний вимірювальний перетворювач
- •2.4.4. Електромеханічні частотоміри і фазометри
- •2.5. Електростатичні прилади
- •2.6. Вимірювальні трансформатори змінного струму та напруги
- •2.6.1. Вимірювальні трансформатори струму (втс)
- •2.6.2. Вимірювальні трансформатори напруги (втн)
- •2.7. Вимірювання потужності та енергії
- •2.7.1. Вимірювання активної потужності в трифазних колах Вимірювання в симетричному колі
- •Вимірювання активної потужності в несиметричних трифазних колах трьома ватметрами
- •Вимірювання активної потужності в трифазному трипровідному колі двома ватметрами
- •Р исунок 2.34
- •2.7.2. Трифазні ватметри
- •2.7.3. Вимірювання реактивної потужності
- •Вимірювання реактивної потужності трьома ватметрами
- •Вимірювання реактивної потужності двома ватметрами
- •2.7.4. Похибки вимірювання потужності, які вносяться вимірювальними трансформаторами
- •2.7.5. Вимірювання електричної енергії індукційними лічильниками
- •Контрольні питання
- •3.1 Електронні вольтметри
- •3.1.1 Амплітудний (піковий) вольтметр
- •3.1.2 Вольтметр середніх квадратичних значень
- •3.2 Електронні частотоміри
- •3.2.1 Суть методу заряду і розряду конденсатора
- •3.2.2 Електронний конденсаторний частотомір
- •3.3 Електронні фазометри
- •3.3.1 Електронний фазометр часового перетворення
- •3.4 Мостові засоби вимірювань
- •3.4.1 Міст Уітстона. Загальна теорія мостових схем
- •3.4.2 Вимірювальні мости постійного струму
- •Одинарний (чотириплечий) міст постійного струму
- •Подвійний (шестиплечий) міст постійного струму
- •3.4.3 Вимірювальні мости змінного струму Мости для вимірювання ємності
- •Мости для вимірювання параметрів котушок індуктивності
- •3.4.4 Автоматичний міст постійного струму
- •3.5 Компенсаційні засоби вимірювань
- •3.5.1 Компенсатори постійного струму Дві схеми компенсації напруги
- •Компенсатор постійного струму
- •3.5.2 Компенсатори змінного струму
- •3.6. Вимірювання електричної енергії електронними лічильниками
- •3.7 Електронний осцилограф
- •3.8 Світлопроменевий осцилограф
- •Контрольні питання
- •4.2 Класифікація цифрових вимірювальних приладів
- •4.3 Цифровий частотомір середніх значень
- •4.4 Цифровий періодомір (частотомір миттєвих значень)
- •4.5 Цифровий фазометр миттєвих значень
- •4.6 Цифровий вольтметр час-імпульсного перетворення
- •4.7 Цифровий вольтметр послідовного наближення
- •4.8 Цифровий вольтметр слідкувального зрівноважування
- •Контрольні питання
- •5.1. Вимірювальні перетворювачі магнітних величин
- •Перетворювач для вимірювання слабких магнітних полів на основі ядерного магнітного резонансу має ампулу з робочою речовиною, яка розташована всередині котушки індуктивності.
- •5.2. Вимірювання характеристик постійних магнітних полів
- •5.3. Вимірювання різниці магнітних потенціалів
- •5.4. Вимірювання характеристик постійних магнітних полів веберметром
- •5.5. Випробування феромагнітних матеріалів
- •5.5.1. Визначення статичних магнітних характеристик
- •5.5.2. Визначення динамічних магнітних характеристик
- •5.5.3. Визначення динамічних характеристик за допомогою вольтметра з керованим випрямлячем
- •5.6 Сенсори струму і напруги на основі ефекта Холла
- •5.6.1 Сенсори струму компенсаційного типу
- •5.6.2 Методика розрахунку параметрів сенсора струму
- •Співвідношення витків складає 1:1000, що і визначає вихідний струм .
- •5.6.3 Сенсори напруги компенсаційного типу
- •5.6.4 Сенсори напруги з зовнішнім резистором
- •Контрольні питання
- •6.1 Особливості вимірювання неелектричних величин
- •6.2 Узагальнена структурна схема
- •6.3 Параметричні вимірювальні перетворювачі
- •6.3.1 Резистивні перетворювачі
- •6.3.2. Ємнісні перетворювачі
- •6.3.3. Індуктивні перетворювачі
- •6.4. Генераторні вимірювальні перетворювачі
- •6.4.1 Індукційні перетворювачі
- •6. 4. 2 П’єзоелектричні перетворювачі
- •6.4.2 Електретні перетворювачі
- •6. 4. 4. Термоелектричні перетворювачі
- •6.4.3. Фотоелектричні перетворювачі
- •Контрольні питання
- •7.1. Функції, що виконуються мікропроцесорами у вимірювальних системах
- •7.2 Архітектура мікропроцесорної системи
- •7.3 Покращення метрологічних характеристик
- •7.4 Процесорні похибки вимірювань
- •7.5 Загальна характеристика мікроконтролерів фірми atmel
- •7.6 Мікропроцесорний частотомір
- •7.8 Мікропроцесорний вимірювач струму та напруги
- •А) мікропроцесорний вольтметр
- •Б) мікропроцесорний амперметр
- •7.9 Вимірювальний канал потужності
- •7.10 Мікропроцесорний вимірювач кутової швидкості
- •7.11 Мікропроцесорний вимірювач ковзання
- •7.12 Мікропроцесорний вимірювач моменту інерції
- •7.13 Мікропроцесорний вимірювач пускового моменту
- •Контрольні питання
- •Література
- •Навчальне видання
- •Метрологія та вимірювальна техніка Навчальний посібник Оригінал-макет підготовлено в.В.Кухарчуком
- •21021, М.Вінниця, Хмельницьке шосе, 95, внту
- •21021, М.Вінниця, Хмельницьке шосе, 95, внту
Мости для вимірювання параметрів котушок індуктивності
Для котушки індуктивності застосовується переважно послідовна схема заміщення (рис.3.21). За допомогою моста визначаються параметри R, L та добротність Q = L/R. Слід відмітити, що tg та Q характеризують властивості конденсатора та котушки на певній частоті. Звичайно в мостах змінного струму вимірювання проводяться на фіксованих частотах.
Рисунок 3.21
Котушка індуктивності, параметри якої вимірюються, вмикається в одне з плечей моста. Щоб міст можна було зрівноважити, хоча б одне з пліч, що залишились, повинно містити або змінну індуктивність, або змінну ємність. Найчастіше застосовують змінну ємність, оскільки конденсатор змінної ємності можна виготовити з більшою точністю та з меншими затратами, ніж котушку зі змінною індуктивністю.
Схема моста приведена на рис.3.22,а. Умова рівноваги для даного випадку запишеться у вигляді:
Rx
+ jLx
=
,
(3.45)
або після перемноження та ділення правої частини на
jC4:
Rx
+ jLx
=
(jR4C4),
(3.46)
звідки
Rx
=
R3;
Lx
= R2R3C4.
(3.47)
Добротність котушки Q=Lx/Rx=R4C4. Зрівноважується такий міст регулюванням R3 та R4. Але, як видно з виразів для Rx та Lx, при виконанні однієї рівності регулюванням (наприклад, рівності Lx=R2R3C4) порушується інша (яка досягається регулюванням R4).
Рисунок 3.22
Недоліком цієї схеми моста є погана збіжність, особливо при низьких добротностях котушки. Якщо Q = 1, процес зрівноважування вже викликає труднощі, а при Q < 0,5 зрівноважування моста практично неможливе.
Вимірювання параметрів котушок індуктивності з низькою добротністю відбувається за допомогою шестиплечого моста (рис.3.22,б). Для одержання умови рівноваги цього моста потрібно трикутник, створений елементами R4, R5 та C, перетворити в зірку. Після такого перетворення виходить чотириплечий міст, умова рівноваги якого відома. З неї випливає вираз для знаходження параметрів котушки (одержати самостійно).
Міст зрівноважується регулюванням R4 та R5. Спочатку регулюванням R4 добиваються виконання першої умови рівноваги, потім регулюванням R5 міст наближається до умови рівноваги. R5 не впливає на першу умову, тому міст має хорошу збіжність.
3.4.4 Автоматичний міст постійного струму
Мости з автоматизованим процесом зрівноваження називаються автоматичними. Вони використовуються не тільки для вимірювання параметрів електричних елементів, але й для автоматичного управління різними процесами.
Схема автоматичного моста для вимірювання опорів Rx приведена на рис.3.23. Якщо міст зрівноважений, напруга у вимірювальній діагоналі дорівнює нулю, і ротор реверсивного двигуна РД нерухомий. При вимірюванні опору Rx на вимірювальній діагоналі з’явиться напруга. Значення цієї напруги визначається опором Rx. Ця напруга підсилюється підсилювачем та подається на реверсивний двигун, який пересуває повзун R1 до тих пір, поки напруга у вимірювальній діагоналі не дорівнюватиме нулю (або буде дуже мало відрізнятись від нуля). Одночасно двигун повертає вказівник П, може переміщати перо для запису вимірюваної величини, керувати виконавчими органами для регулювання процесу (наприклад, вмикати або вимикати нагрівач печі).
Рисунок 3.23
Автоматичні мости постійного струму мають основну зведену похибку (0,251)%. В автоматичних мостах змінного струму необхідно для досягнення рівноваги регулювати два елементи. Через це та в силу інших причин автоматичні мости змінного струму поступаються точністю автоматичним мостам постійного струму.