
- •Та вимірювальна техніка
- •1.1. Фізична величина - основне поняття метрології
- •1.1.1 Систематизація фізичних величин
- •1.1.2 Основне рівняння вимірювання
- •1.2 Класифікація вимірювань
- •1.3 Засоби вимірювальної техніки
- •1.3.1 Вимірювальні пристрої
- •1.3.2. Засоби вимірювання
- •1.4. Методи вимірювань
- •1.5 Похибки вимірювань
- •1.5.1 Систематичні похибки і методи їх вилучення
- •1.5.2 Випадкові похибки
- •1.5.3 Оцінка випадкових похибок прямих вимірювань
- •1.5.4 Оцінка випадкових похибок опосередкованих вимірювань
- •1.6 Властивості засобів вимірювань
- •1.6.1 Статичні метрологічні характеристики
- •1.6.2 Похибки засобів вимірювань
- •1.7 Повірка засобів вимірювальної техніки
- •1.8 Державна система забезпечення єдності вимірювань
- •Контрольні питання
- •2.2. Магнітоелектричні прилади
- •2.2.1. Магнітоелектричний вимірювальний перетворювач
- •2.2.2. Магнітоелектричні амперметри
- •2.2.3. Магнітоелектричні вольтметри
- •2.2.4. Магнітоелектричні гальванометри
- •2.2.5. Магнітоелектричні омметри
- •2.2.6. Випрямні прилади
- •2.2.7. Термоелектричні прилади
- •2.3. Електромагнітні прилади
- •2.3.1. Електромагнітний вимірювальний перетворювач
- •2.3.2. Електромагнітні амперметри та вольтметри
- •2.4. Електродинамічні прилади
- •2.4.1. Електродинамічний вимірювальний перетворювач
- •2.4.2. Амперметри, вольтметри і ватметри електродинамічної системи
- •2.4.3. Феродинамічний вимірювальний перетворювач
- •2.4.4. Електромеханічні частотоміри і фазометри
- •2.5. Електростатичні прилади
- •2.6. Вимірювальні трансформатори змінного струму та напруги
- •2.6.1. Вимірювальні трансформатори струму (втс)
- •2.6.2. Вимірювальні трансформатори напруги (втн)
- •2.7. Вимірювання потужності та енергії
- •2.7.1. Вимірювання активної потужності в трифазних колах Вимірювання в симетричному колі
- •Вимірювання активної потужності в несиметричних трифазних колах трьома ватметрами
- •Вимірювання активної потужності в трифазному трипровідному колі двома ватметрами
- •Р исунок 2.34
- •2.7.2. Трифазні ватметри
- •2.7.3. Вимірювання реактивної потужності
- •Вимірювання реактивної потужності трьома ватметрами
- •Вимірювання реактивної потужності двома ватметрами
- •2.7.4. Похибки вимірювання потужності, які вносяться вимірювальними трансформаторами
- •2.7.5. Вимірювання електричної енергії індукційними лічильниками
- •Контрольні питання
- •3.1 Електронні вольтметри
- •3.1.1 Амплітудний (піковий) вольтметр
- •3.1.2 Вольтметр середніх квадратичних значень
- •3.2 Електронні частотоміри
- •3.2.1 Суть методу заряду і розряду конденсатора
- •3.2.2 Електронний конденсаторний частотомір
- •3.3 Електронні фазометри
- •3.3.1 Електронний фазометр часового перетворення
- •3.4 Мостові засоби вимірювань
- •3.4.1 Міст Уітстона. Загальна теорія мостових схем
- •3.4.2 Вимірювальні мости постійного струму
- •Одинарний (чотириплечий) міст постійного струму
- •Подвійний (шестиплечий) міст постійного струму
- •3.4.3 Вимірювальні мости змінного струму Мости для вимірювання ємності
- •Мости для вимірювання параметрів котушок індуктивності
- •3.4.4 Автоматичний міст постійного струму
- •3.5 Компенсаційні засоби вимірювань
- •3.5.1 Компенсатори постійного струму Дві схеми компенсації напруги
- •Компенсатор постійного струму
- •3.5.2 Компенсатори змінного струму
- •3.6. Вимірювання електричної енергії електронними лічильниками
- •3.7 Електронний осцилограф
- •3.8 Світлопроменевий осцилограф
- •Контрольні питання
- •4.2 Класифікація цифрових вимірювальних приладів
- •4.3 Цифровий частотомір середніх значень
- •4.4 Цифровий періодомір (частотомір миттєвих значень)
- •4.5 Цифровий фазометр миттєвих значень
- •4.6 Цифровий вольтметр час-імпульсного перетворення
- •4.7 Цифровий вольтметр послідовного наближення
- •4.8 Цифровий вольтметр слідкувального зрівноважування
- •Контрольні питання
- •5.1. Вимірювальні перетворювачі магнітних величин
- •Перетворювач для вимірювання слабких магнітних полів на основі ядерного магнітного резонансу має ампулу з робочою речовиною, яка розташована всередині котушки індуктивності.
- •5.2. Вимірювання характеристик постійних магнітних полів
- •5.3. Вимірювання різниці магнітних потенціалів
- •5.4. Вимірювання характеристик постійних магнітних полів веберметром
- •5.5. Випробування феромагнітних матеріалів
- •5.5.1. Визначення статичних магнітних характеристик
- •5.5.2. Визначення динамічних магнітних характеристик
- •5.5.3. Визначення динамічних характеристик за допомогою вольтметра з керованим випрямлячем
- •5.6 Сенсори струму і напруги на основі ефекта Холла
- •5.6.1 Сенсори струму компенсаційного типу
- •5.6.2 Методика розрахунку параметрів сенсора струму
- •Співвідношення витків складає 1:1000, що і визначає вихідний струм .
- •5.6.3 Сенсори напруги компенсаційного типу
- •5.6.4 Сенсори напруги з зовнішнім резистором
- •Контрольні питання
- •6.1 Особливості вимірювання неелектричних величин
- •6.2 Узагальнена структурна схема
- •6.3 Параметричні вимірювальні перетворювачі
- •6.3.1 Резистивні перетворювачі
- •6.3.2. Ємнісні перетворювачі
- •6.3.3. Індуктивні перетворювачі
- •6.4. Генераторні вимірювальні перетворювачі
- •6.4.1 Індукційні перетворювачі
- •6. 4. 2 П’єзоелектричні перетворювачі
- •6.4.2 Електретні перетворювачі
- •6. 4. 4. Термоелектричні перетворювачі
- •6.4.3. Фотоелектричні перетворювачі
- •Контрольні питання
- •7.1. Функції, що виконуються мікропроцесорами у вимірювальних системах
- •7.2 Архітектура мікропроцесорної системи
- •7.3 Покращення метрологічних характеристик
- •7.4 Процесорні похибки вимірювань
- •7.5 Загальна характеристика мікроконтролерів фірми atmel
- •7.6 Мікропроцесорний частотомір
- •7.8 Мікропроцесорний вимірювач струму та напруги
- •А) мікропроцесорний вольтметр
- •Б) мікропроцесорний амперметр
- •7.9 Вимірювальний канал потужності
- •7.10 Мікропроцесорний вимірювач кутової швидкості
- •7.11 Мікропроцесорний вимірювач ковзання
- •7.12 Мікропроцесорний вимірювач моменту інерції
- •7.13 Мікропроцесорний вимірювач пускового моменту
- •Контрольні питання
- •Література
- •Навчальне видання
- •Метрологія та вимірювальна техніка Навчальний посібник Оригінал-макет підготовлено в.В.Кухарчуком
- •21021, М.Вінниця, Хмельницьке шосе, 95, внту
- •21021, М.Вінниця, Хмельницьке шосе, 95, внту
3.3 Електронні фазометри
Залежно від способу перетворення різниці фаз в проміжну фізичну величину в основу побудови електронних фазометрів покладено такі методи:
перетворення різниці фаз в часовий інтервал;
вимірювання різниці фаз за допомогою осцилографа;
вимірювання різниці фаз методом дискретної лічби.
3.3.1 Електронний фазометр часового перетворення
Суть часового перетворення полягає в перетворенні двох синусоїдних напруг у часовий інтервал, що формується у моменти переходу цих напруг через рівні нуля з похідними однакового знаку.
Структурна схема і часові діаграми роботи електронного фазометра наведено на рис.3.11 і рис.3.12 відповідно.
Н
апруги
u1(t) і u2(t), різницю фаз х
між якими необхідно виміряти, надходять
на входи формувачів F1 і F2. В моменти
переходу синусоїдних напруг u1(t)
Рисунок 3.11 і u2(t) через рівні нуля на виходах формувачів формуються короткі прямокутні імпульси, які надходять на S і R-входи тригера Т. За допомогою SR-тригера Т в кожному періоді Тх синусоїдних напруг u1(t) і u2(t) формується часовий інтервал х, пропорційний різниці фаз х.
Рисунок 3.12
Якщо цю послідовність імпульсів х подати на магнітоелектричний вимірювальний перетворювач ВМ, то його покази будуть відповідати середньому значенню струму:
,
(3.13)
де х
= t2 – t1,
-
струм, максимальне значення якого
задається за допомогою струмообмежувального
резистора R.
Для отримання рівняння перетворення для даного фазометра знайдемо залежність між різницею фаз х і часовим інтервалом х:
,
(3.14)
звідки
.
(3.15)
Підставимо (3.15) в (3.13) і отримаємо:
.
(3.16)
Оскільки даний середній струм вимірюється магнітоелектричним перетворювачем, то остаточне рівняння перетворення електронного фазометра матиме такий вигляд:
.
(3.17)
Якщо подати (3.17) у вигляді
,
(3.18)
і врахувати те, що
,
то з (3.18) очевидна лінійність статичної характеристики цього фазометра.
Шкалу магнітоелектричного амперметра градуюють в градусах або в значеннях cos .
Оскільки середній струм є результатом усереднення струму в кожному періоді Тх за час вимірювання , то такі фазометри називають фазометрами середніх значень.
Суттєвою перевагою електронних фазометрів порівняно з електромеханічними є інваріантність показів до частоти fx.
3.4 Мостові засоби вимірювань
Мостові схеми застосовуються для вимірювання параметрів електричних кіл, а також для вимірювання неелектричних величин сумісно з параметричними вимірювальними перетворювачами.
Мостовим називають електричне коло, в якому можна виділити два розгалуження опорів, значення між якими дорівнює нескінченності при відповідному співвідношенні параметрів елементів кола, і скінченому значенню, якщо це співвідношення не виконується.
Засіб вимірювання, в основу якого покладено мостове коло, називають вимірювальним мостом.
Вимірювальні мости класифікують за такими ознаками:
за родом струму, що живить мостове коло, виділяють мости постійного і змінного струму;
за архітектурою побудови – чотири- і багатоплечі;
за способом зрівноваження – автоматичні та з ручним зрівноваженням.