
- •Та вимірювальна техніка
- •1.1. Фізична величина - основне поняття метрології
- •1.1.1 Систематизація фізичних величин
- •1.1.2 Основне рівняння вимірювання
- •1.2 Класифікація вимірювань
- •1.3 Засоби вимірювальної техніки
- •1.3.1 Вимірювальні пристрої
- •1.3.2. Засоби вимірювання
- •1.4. Методи вимірювань
- •1.5 Похибки вимірювань
- •1.5.1 Систематичні похибки і методи їх вилучення
- •1.5.2 Випадкові похибки
- •1.5.3 Оцінка випадкових похибок прямих вимірювань
- •1.5.4 Оцінка випадкових похибок опосередкованих вимірювань
- •1.6 Властивості засобів вимірювань
- •1.6.1 Статичні метрологічні характеристики
- •1.6.2 Похибки засобів вимірювань
- •1.7 Повірка засобів вимірювальної техніки
- •1.8 Державна система забезпечення єдності вимірювань
- •Контрольні питання
- •2.2. Магнітоелектричні прилади
- •2.2.1. Магнітоелектричний вимірювальний перетворювач
- •2.2.2. Магнітоелектричні амперметри
- •2.2.3. Магнітоелектричні вольтметри
- •2.2.4. Магнітоелектричні гальванометри
- •2.2.5. Магнітоелектричні омметри
- •2.2.6. Випрямні прилади
- •2.2.7. Термоелектричні прилади
- •2.3. Електромагнітні прилади
- •2.3.1. Електромагнітний вимірювальний перетворювач
- •2.3.2. Електромагнітні амперметри та вольтметри
- •2.4. Електродинамічні прилади
- •2.4.1. Електродинамічний вимірювальний перетворювач
- •2.4.2. Амперметри, вольтметри і ватметри електродинамічної системи
- •2.4.3. Феродинамічний вимірювальний перетворювач
- •2.4.4. Електромеханічні частотоміри і фазометри
- •2.5. Електростатичні прилади
- •2.6. Вимірювальні трансформатори змінного струму та напруги
- •2.6.1. Вимірювальні трансформатори струму (втс)
- •2.6.2. Вимірювальні трансформатори напруги (втн)
- •2.7. Вимірювання потужності та енергії
- •2.7.1. Вимірювання активної потужності в трифазних колах Вимірювання в симетричному колі
- •Вимірювання активної потужності в несиметричних трифазних колах трьома ватметрами
- •Вимірювання активної потужності в трифазному трипровідному колі двома ватметрами
- •Р исунок 2.34
- •2.7.2. Трифазні ватметри
- •2.7.3. Вимірювання реактивної потужності
- •Вимірювання реактивної потужності трьома ватметрами
- •Вимірювання реактивної потужності двома ватметрами
- •2.7.4. Похибки вимірювання потужності, які вносяться вимірювальними трансформаторами
- •2.7.5. Вимірювання електричної енергії індукційними лічильниками
- •Контрольні питання
- •3.1 Електронні вольтметри
- •3.1.1 Амплітудний (піковий) вольтметр
- •3.1.2 Вольтметр середніх квадратичних значень
- •3.2 Електронні частотоміри
- •3.2.1 Суть методу заряду і розряду конденсатора
- •3.2.2 Електронний конденсаторний частотомір
- •3.3 Електронні фазометри
- •3.3.1 Електронний фазометр часового перетворення
- •3.4 Мостові засоби вимірювань
- •3.4.1 Міст Уітстона. Загальна теорія мостових схем
- •3.4.2 Вимірювальні мости постійного струму
- •Одинарний (чотириплечий) міст постійного струму
- •Подвійний (шестиплечий) міст постійного струму
- •3.4.3 Вимірювальні мости змінного струму Мости для вимірювання ємності
- •Мости для вимірювання параметрів котушок індуктивності
- •3.4.4 Автоматичний міст постійного струму
- •3.5 Компенсаційні засоби вимірювань
- •3.5.1 Компенсатори постійного струму Дві схеми компенсації напруги
- •Компенсатор постійного струму
- •3.5.2 Компенсатори змінного струму
- •3.6. Вимірювання електричної енергії електронними лічильниками
- •3.7 Електронний осцилограф
- •3.8 Світлопроменевий осцилограф
- •Контрольні питання
- •4.2 Класифікація цифрових вимірювальних приладів
- •4.3 Цифровий частотомір середніх значень
- •4.4 Цифровий періодомір (частотомір миттєвих значень)
- •4.5 Цифровий фазометр миттєвих значень
- •4.6 Цифровий вольтметр час-імпульсного перетворення
- •4.7 Цифровий вольтметр послідовного наближення
- •4.8 Цифровий вольтметр слідкувального зрівноважування
- •Контрольні питання
- •5.1. Вимірювальні перетворювачі магнітних величин
- •Перетворювач для вимірювання слабких магнітних полів на основі ядерного магнітного резонансу має ампулу з робочою речовиною, яка розташована всередині котушки індуктивності.
- •5.2. Вимірювання характеристик постійних магнітних полів
- •5.3. Вимірювання різниці магнітних потенціалів
- •5.4. Вимірювання характеристик постійних магнітних полів веберметром
- •5.5. Випробування феромагнітних матеріалів
- •5.5.1. Визначення статичних магнітних характеристик
- •5.5.2. Визначення динамічних магнітних характеристик
- •5.5.3. Визначення динамічних характеристик за допомогою вольтметра з керованим випрямлячем
- •5.6 Сенсори струму і напруги на основі ефекта Холла
- •5.6.1 Сенсори струму компенсаційного типу
- •5.6.2 Методика розрахунку параметрів сенсора струму
- •Співвідношення витків складає 1:1000, що і визначає вихідний струм .
- •5.6.3 Сенсори напруги компенсаційного типу
- •5.6.4 Сенсори напруги з зовнішнім резистором
- •Контрольні питання
- •6.1 Особливості вимірювання неелектричних величин
- •6.2 Узагальнена структурна схема
- •6.3 Параметричні вимірювальні перетворювачі
- •6.3.1 Резистивні перетворювачі
- •6.3.2. Ємнісні перетворювачі
- •6.3.3. Індуктивні перетворювачі
- •6.4. Генераторні вимірювальні перетворювачі
- •6.4.1 Індукційні перетворювачі
- •6. 4. 2 П’єзоелектричні перетворювачі
- •6.4.2 Електретні перетворювачі
- •6. 4. 4. Термоелектричні перетворювачі
- •6.4.3. Фотоелектричні перетворювачі
- •Контрольні питання
- •7.1. Функції, що виконуються мікропроцесорами у вимірювальних системах
- •7.2 Архітектура мікропроцесорної системи
- •7.3 Покращення метрологічних характеристик
- •7.4 Процесорні похибки вимірювань
- •7.5 Загальна характеристика мікроконтролерів фірми atmel
- •7.6 Мікропроцесорний частотомір
- •7.8 Мікропроцесорний вимірювач струму та напруги
- •А) мікропроцесорний вольтметр
- •Б) мікропроцесорний амперметр
- •7.9 Вимірювальний канал потужності
- •7.10 Мікропроцесорний вимірювач кутової швидкості
- •7.11 Мікропроцесорний вимірювач ковзання
- •7.12 Мікропроцесорний вимірювач моменту інерції
- •7.13 Мікропроцесорний вимірювач пускового моменту
- •Контрольні питання
- •Література
- •Навчальне видання
- •Метрологія та вимірювальна техніка Навчальний посібник Оригінал-макет підготовлено в.В.Кухарчуком
- •21021, М.Вінниця, Хмельницьке шосе, 95, внту
- •21021, М.Вінниця, Хмельницьке шосе, 95, внту
2.2.5. Магнітоелектричні омметри
Існують дві схеми омметрів: одна – з послідовним вмиканням вимірюваного опору Rх та вимірювального механізму ВМ (рис. 2.8, а), інша – з паралельним (рис. 2.8, б). Для омметра з послідовною схемою струм через вимірювальний механізм (при ненатиснутій кнопці Кн) дорівнює:
відхилення
рухомої частини
Відхилення є функцією Rх, воно максимальне при Rх = 0, тобто нуль знаходиться на шкалі приладу справа.
а) б)
Рисунок 2.8
Для омметра з паралельною схемою:
(2.26)
Відхилення = 0 при Rх = 0, тобто нуль знаходиться на шкалі приладу зліва. Максимальне відхилення буде при Rх = , тому омметри з паралельною схемою використовуються для вимірювання малих опорів, а з послідовною – для великих. Шкали омметрів нерівномірні.
Такі омметри виготовляються переносними з живленням від сухих елементів. У процесі експлуатації напруга на затискачах сухих елементів змінюється і може відрізнятись від тієї, яка була при градуюванні приладу. Тому перед кожним вимірюванням в омметрі з послідовною схемою при натиснутій кнопці Кн потрібно встановлювати показ “0” зміною опору Rд, а в омметрі з паралельною схемою потрібно встановити показ “0” при непідключеному Rх. Це є недоліком таких омметрів. Цього недоліку не мають омметри, які використовують механізм-логометр.
В логометричному механізмі (рис.2.9) в проміжку обертаються дві рамки, жорстко скріплені між собою. Протидійних пружин в цьому механізмі немає. Струм підводиться до рамок через безмоментні струмопідводи, які являють собою тонкі стрічки з відпаленого сплаву.
Проміжок між осердям та полюсними наконечниками в цьому механізмі нерівномірний, отже, магнітне поле у проміжку також нерівномірне. Струми І1 та І2, які протікають в рамках, створюють два обертальних моменти, які направлені назустріч один одному. Під дією різниці між двома моментами рухома частина повертається. Оскільки поле нерівномірне, то при повороті рухомої частини один з моментів збільшується, а інший – зменшується і при певному куті повороту моменти стають рівними один одному, а рухома частина зупиняється. При відсутності струмів у рамках рухома частина може знаходитись у будь-якому з можливих положень або, як кажуть, займати байдуже положення.
Рисунок 2.9
Енергія магнітного поля кожної із рамок дорівнює:
WeM1 = 1()І1; WeM2 = 2()І2, (2.27)
де 1() та 2() – магнітні потокозчеплення рамок, які залежать від кута повороту .
Оскільки поле у проміжку механізму неоднорідне, то залежності магнітних потокозчеплень 1 та 2 від кута повороту різні. Моменти, які створюються рамками:
(2.28)
При
рівновазі
,
звідки
(2.29)
або
= F(I1/I2). (2.30)
Таким чином, кут відхилення рухомої частини логометра визначається відношенням струмів у рамках (в перекладі з грецької “логос” – відношення).
Схема логометричного омметра наведена на рис. 2.10. Для цієї схеми маємо:
=
F(I1/I2)
=
або
(2.31)
де R1 та R2 – опори рамок, Rн та Rд – додаткові опори.
З виразу (2.31) видно, що відхилення залежить від Rх і не залежить від напруги живлення.
Існують омметри з логометричними вимірювальними механізмами, напруга живлення в яких виробляється електромеханічними генераторами, які приводяться до роботи вручну. Використовуються вони для вимірювання великих опорів (наприклад, опорів ізоляції, які мають значення в десятки та сотні МОм).
Рисунок 2.10