
- •Предисловие
- •Введение
- •I. Электрическое поле
- •I.1. Исходные положения. Основные понятия и определения
- •I.2. Основной закон электростатики
- •I.3. Электростатическое поле. Напряженность поля
- •I.4. Циркуляция вектора напряженности электростатического поля. Потенциал поля
- •I.5. Связь между силовой и энергетической характеристиками электростатического поля
- •I.6. Теорема Гаусса для электростатического поля в вакууме
- •I.7. Диэлектрики в электростатическом поле. Теорема Гаусса для электростатического поля в диэлектрике
- •I.8. Проводники в электростатическом поле. Конденсаторы
- •I.9. Энергия электростатического поля
- •Краткие выводы
- •Вопросы для самоконтроля и повторения
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •II. Постоянный электрический ток
- •II.1. Электрический ток и его характеристики
- •II.2. Закон Ома в дифференциальной форме
- •II.3. Последовательное и параллельное соединение проводников. Электроизмерительные приборы
- •II.4. Работа и мощность тока. Закон Джоуля-Ленца
- •II.5. Закон Ома в интегральной форме
- •II.6. Расчет разветвленных цепей постоянного тока
- •Краткие выводы
- •Вопросы для самоконтроля и повторения
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •III. Магнитное поле
- •III.1. Магнитное поле и его характеристики
- •III.2. Закон Био-Савара-Лапласа
- •III.3. Магнитное поле движущегося заряда. Сила Лоренца
- •III.4. Проводник с током в магнитном поле. Закон Ампера
- •III.5. Циркуляция вектора индукции магнитного поля в вакууме
- •III.6. Теорема Гаусса для магнитного поля в вакууме
- •III.7. Магнитные свойства вещества
- •Краткие выводы
- •Вопросы для самоконтроля и повторения
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •IV. Электромагнитная индукция
- •IV.1. Закон электромагнитной индукции
- •IV.2. Явление самоиндукции. Индуктивность контура
- •IV.3. Взаимная индукция
- •IV.4. Энергия магнитного поля
- •IV.5. Практическое применение электромагнитной индукции
- •Краткие выводы
- •Вопросы для самоконтроля и повторения
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •V. Элементы теории электромагнитного поля
- •V.1. Вихревое электрическое поле
- •V.2. Ток смещения
- •V.3. Уравнения Максвелла для электромагнитного поля
- •Краткие выводы
- •Вопросы для самоконтроля и повторения
- •VI. Электромагнитные колебания и волны
- •VI.1. Свободные колебания в rlc-контуре
- •VI.2. Вынужденные колебания. Переменный электрический ток
- •VI.3. Резонанс в электрических цепях
- •VI.4. Источники электромагнитных волн
- •VI.5. Уравнения электромагнитной волны
- •VI.6. Плоская электромагнитная волна
- •VI.7. Энергия и импульс электромагнитной волны
- •Краткие выводы
- •Вопросы для самоконтроля и повторения
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •VII. Основы волновой оптики
- •VII.1. Краткая история развития представлений о природе света
- •VII.2. Интерференция света
- •VII.3. Дифракция света
- •VII.4. Поляризация света
- •VII.5. Взаимодействие электромагнитных волн с веществом
- •Краткие выводы
- •Вопросы для самоконтроля и повторения
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Заключение
- •Библиографический список
- •Основные физические величины и их единицы в си
- •Производные единицы электрических и магнитных величин
- •Элементы векторной алгебры
- •Основные законы и формулы классической электродинамики
- •Некоторые знаменательные события в истории развития электродинамики
- •Оглавление
- •Александр Фёдорович Ан
IV.3. Взаимная индукция
Если два контура
расположены один возле другого и в
каждом из них изменяется сила тока, то
они будут взаимно влиять друг на друга.
Изменение
в первом контуре вызовет появление
индуцированной ЭДС во втором контуре
и, наоборот, изменение тока
и магнитного поля второго контура будет
причиной появления индуцированной ЭДС
в первом контуре. Это
явление
называется взаимоиндукцией, а ЭДС,
возникающая вследствие
влияния
контуров друг на друга, называется ЭДС
взаимоиндукции.
Таким образом,
явление взаимоиндукции – это тоже одна
из разновидностей электромагнитной
индукции. Явление взаимоиндукции
характери-зуется
коэффициентом взаимоиндукции
или
.
Его называют также
взаимной
индуктивностью контуров. Коэффициент
взаимоиндукции измеряют в тех же
единицах, что и коэффициент самоиндукции,
то есть в генри и миллигенри.
Р
ассмотрим
два неподвижных контура,
расположенных достаточно близко
друг от друга (рис. 4.4). Если в контуре 1
течет ток
силой
,
то магнитный поток,
создаваемый этим
током, пропорционален
.
Часть этого
потока
,
пронизывающего контур 2, равна
где – взаимная индуктивность контуров.
Если ток изменяется, то в контуре 2 индуцируется ЭДС
(4.8)
Аналогично, при протекании тока силой в контуре 2 его магнитный поток пронизывает контур 1 и
(4.9)
Расчеты,
подтверждаемые опытом, показывают, что
.
Эти коэффициенты зависят от
геометрической формы, размеров, взаимного
расположения контуров
и магнитной проницаемости среды,
окружающей контуры.
Из формул (4.8) и (4.9) следует, что взаимоиндукция в один генри будет между двумя контурами тогда, когда в одном из них возникает ЭДС взаимоиндукции, равная одному вольту при изменении силы тока в другом контуре на один ампер в секунду.
Явление взаимоиндукции используется в электротехнических устройствах, которые применяются для повышения и понижения напряжения переменного тока. Такие устройства называют трансформаторами.
Индукционные явления служат причиной возникновения внутри металлов паразитных токов. Эти токи называют вихревыми токами или токами Фуко.
Природа вихревых токов индуктивная, и возникают они в соответствии с правилом Ленца. Вихревые токи появляются в массивных проводниках, находящихся в переменном магнитном поле. Каждый такой ток образует как бы свой небольшой электромагнит. Магнитные поля, обусловленные вихревыми токами, взаимодействуют с основным полем.
Следствием появления вихревых токов является нагревание металла, то есть потери энергии на выделение джоулевой теплоты. Для уменьшения таких потерь часто железные сердечники электротехнических устройств изготавливают из отдельных пластин, изолированных друг от друга.
В металлургии вихревые токи используются для плавки металлов в индукционных печах. Торможение, которое появляется вследствие взаимодействия магнитного поля вихревых токов с основным магнитным полем, используется в некоторых измерительных устройствах.