
- •Предисловие
- •Введение
- •I. Электрическое поле
- •I.1. Исходные положения. Основные понятия и определения
- •I.2. Основной закон электростатики
- •I.3. Электростатическое поле. Напряженность поля
- •I.4. Циркуляция вектора напряженности электростатического поля. Потенциал поля
- •I.5. Связь между силовой и энергетической характеристиками электростатического поля
- •I.6. Теорема Гаусса для электростатического поля в вакууме
- •I.7. Диэлектрики в электростатическом поле. Теорема Гаусса для электростатического поля в диэлектрике
- •I.8. Проводники в электростатическом поле. Конденсаторы
- •I.9. Энергия электростатического поля
- •Краткие выводы
- •Вопросы для самоконтроля и повторения
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •II. Постоянный электрический ток
- •II.1. Электрический ток и его характеристики
- •II.2. Закон Ома в дифференциальной форме
- •II.3. Последовательное и параллельное соединение проводников. Электроизмерительные приборы
- •II.4. Работа и мощность тока. Закон Джоуля-Ленца
- •II.5. Закон Ома в интегральной форме
- •II.6. Расчет разветвленных цепей постоянного тока
- •Краткие выводы
- •Вопросы для самоконтроля и повторения
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •III. Магнитное поле
- •III.1. Магнитное поле и его характеристики
- •III.2. Закон Био-Савара-Лапласа
- •III.3. Магнитное поле движущегося заряда. Сила Лоренца
- •III.4. Проводник с током в магнитном поле. Закон Ампера
- •III.5. Циркуляция вектора индукции магнитного поля в вакууме
- •III.6. Теорема Гаусса для магнитного поля в вакууме
- •III.7. Магнитные свойства вещества
- •Краткие выводы
- •Вопросы для самоконтроля и повторения
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •IV. Электромагнитная индукция
- •IV.1. Закон электромагнитной индукции
- •IV.2. Явление самоиндукции. Индуктивность контура
- •IV.3. Взаимная индукция
- •IV.4. Энергия магнитного поля
- •IV.5. Практическое применение электромагнитной индукции
- •Краткие выводы
- •Вопросы для самоконтроля и повторения
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •V. Элементы теории электромагнитного поля
- •V.1. Вихревое электрическое поле
- •V.2. Ток смещения
- •V.3. Уравнения Максвелла для электромагнитного поля
- •Краткие выводы
- •Вопросы для самоконтроля и повторения
- •VI. Электромагнитные колебания и волны
- •VI.1. Свободные колебания в rlc-контуре
- •VI.2. Вынужденные колебания. Переменный электрический ток
- •VI.3. Резонанс в электрических цепях
- •VI.4. Источники электромагнитных волн
- •VI.5. Уравнения электромагнитной волны
- •VI.6. Плоская электромагнитная волна
- •VI.7. Энергия и импульс электромагнитной волны
- •Краткие выводы
- •Вопросы для самоконтроля и повторения
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •VII. Основы волновой оптики
- •VII.1. Краткая история развития представлений о природе света
- •VII.2. Интерференция света
- •VII.3. Дифракция света
- •VII.4. Поляризация света
- •VII.5. Взаимодействие электромагнитных волн с веществом
- •Краткие выводы
- •Вопросы для самоконтроля и повторения
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Заключение
- •Библиографический список
- •Основные физические величины и их единицы в си
- •Производные единицы электрических и магнитных величин
- •Элементы векторной алгебры
- •Основные законы и формулы классической электродинамики
- •Некоторые знаменательные события в истории развития электродинамики
- •Оглавление
- •Александр Фёдорович Ан
II.6. Расчет разветвленных цепей постоянного тока
З
акон
Ома в интегральной форме позволяет
рассчитывать практически любую
электрическую цепь. Однако непосредственный
расчет разветвленных цепей, содержащих
замкнутые контуры, достаточно сложен.
Эта задача упрощается при
использовании правил Кирхгофа (немецкий
физик, XIX в.).
Любая точка разветвленной электрической цепи, в которой сходится не менее трех проводников тока, называется узлом. При этом ток, входящий в узел, считается положительным, а ток, выходящий из узла – отрицательным (рис. 2.9).
Первое правило Кирхгофа сформулировано для узла электрической цепи: алгебраическая сумма сил токов в узле электрической цепи равна нулю, то есть
где n – число проводников, сходящихся в узле.
Таким образом, при указанных на рис. 2.9 направлениях токов в проводниках первое правило Кирхгофа запишется в виде
Первое правило Кирхгофа является следствием закона сохранения электрического заряда.
В
торое
правило Кирхгофа
вытекает из закона Ома в интегральной
форме для разветвленных цепей.
Выделим в сложной электрической цепи
замкнутый контур, состоящий из трех
участков (рис. 2.10). Условимся обходить
контур по часовой стрелке. Все токи,
совпадающие по направлению
с выбранным
направлением обхода контура, считаются
положительными. ЭДС источников считаются
положительными, если они создают ток,
направленный в сторону обхода
контура. Применяя к отдельным участкам
контура закон Ома, запишем:
Складывая почленно эти уравнения, получим
Таким образом, второе правило Кирхгофа гласит: в любом замкнутом контуре электрической цепи алгебраическая сумма ЭДС источников равна алгебраической сумме падений напряжений на отдельных участка этого контура, то есть
где n – количество источников тока в контуре; m – число участков в контуре.
При расчете сложных цепей постоянного тока с применением правил Кирхгофа следует придерживаться следующих рекомендаций:
1. Произвольно выбирают направления токов в ветвях цепи. Действительные направления токов в схеме определяются после завершения расчетов: если искомый ток получился положительным, то его направление было выбрано правильно, если отрицательным – его истинное направление противоположно выбранному.
2. Выбирают направления
обхода замкнутых контуров цепи (по
часовой или против часовой стрелке).
Произведение
положительно, если ток на данном участке
совпадает по направлению с направлением
обхода; ЭДС, действующие по направлению
обхода, считаются положительными, против
направления обхода – отрицательными.
3. Составляют столько уравнений, чтобы их число было равно числу неизвестных токов, то есть числу ветвей в схеме. По первому правилу Кирхгофа составляют n-1 уравнений, где n – число узлов в схеме. Остальные уравнения составляют по второму правилу Кирхгофа.
4. Для проверки расчетов составляют баланс мощности в цепи: алгебраическая сумма мощностей источников тока равна сумме мощностей, рассеиваемых в ветвях схемы, то есть
где n – число источников тока в цепи; m – количество ветвей в схеме.