Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Семинар1_8-Экспрессия.doc
Скачиваний:
3
Добавлен:
18.08.2019
Размер:
92.16 Кб
Скачать

Посттранскрипционная регуляция экспрессии генов

Регуляция экспрессии генов на уровне уже синтезированной РНК играет исключительно важную роль в онтогенезе многоклеточных и особенно высших организмов. Среди различных способов посттранскрипционной регуляции наибольшее значение имеют

- механизмы внутриклеточной локализации и

- депонирования РНК с последующим специфическим вовлечением ее в трансляцию,

- разные формы процессинга предшественников мРНК,

- избирательной деградации мРНК и ее ковалентных посттранскрипционных модификаций.

Направленный транспорт, внутриклеточная локализация и депонирование мРнк

Внутриклеточное распределение матричной РНК. По завершении регулируемого синтеза РНК в процессе транскрипции она должна быть доставлена к месту трансляции. При этом многие виды мРНК оказываются асимметрично распределенными в цитоплазме родительских клеток, пролиферация которых сопровождается избирательным попаданием (доставкой) мРНК в дочерние клетки. В итоге на ранних стадиях эмбриогенеза в зиготе и дочерних клетках происходит образование набора белков без соответствующей транскрипции их собственных генов, что обеспечивает их дальнейшую дифференцировку. Такой тип регуляции экспрессии генов через асимметричное распределение их РНК в цитоплазме играет исключительно важную роль в оогенезе животных, завершаемом образованием зрелых яйцеклеток.

В качестве примера рассмотрим образование ооцита мухи-дрозофилы. В передней части яичников дрозофилы (гермарии) происходит асимметричное деление стволовых клеток, сопровождаемое образованием коммутированных клеток, называемых цистобластами. Каждый цистобласт делится четыре раза с образованием 16 цистоцитов - группы клеток, связанных друг с другом цитоплазматическими мостиками, которые проходят через специализированные, связанные с цитоскелетом структуры, называемые кольцевыми каналами. Лишь один из 16 цистоцитов становится ооцитом, остальные 15 - питающими клетками. Каждая из 16-клеточных зародышевых цист окружена соматическими фолликулярными клетками. Для созревания яйцеклетки в яйцевой камере требуется три дня. В это время питающие клетки синтезируют большое количество РНК и белков, которые переносятся в созревающий ооцит. Большинство этих молекул бывают необходимы в первые два часа эмбрионального развития дрозофилы, до начала транскрипции в зиготе.

Выбор клетки, которая становится ооцитом среди 16 цистоцитов, не происходит случайно. Лишь две из 16 клеток связаны кольцевыми каналами с четырьмя другими, и одна из этих двух клеток всегда дифференцируется в ооцит. Большая цитоплазматическая структура, названная фьюсомой, в формировании которой участвует несколько белков цитоскелета, проходит через кольцевые каналы, объединяющие цистоциты, и участвует в детерминации ооцита. Единственный в 16-клеточном комплексе центр, организующий микротрубочки (МТОС), расположен в проооците. МТОС объединяет нити микротрубочек, исходящих из всех 15 питающих клеток, которые проходят через кольцевые каналы. Поскольку в МТОС сходятся минус-концы микротрубочек, основанный на микротрубочках цитоскелет 16-клеточной конструкции структурно поляризован. Такая направленность микротрубочек играет ключевую роль в упорядоченном транспорте РНК из питающих клеток в созревающий ооцит и специфическом распределении РНК в самом ооците, а следовательно, лежит в основе регулируемой экспрессии генов развивающегося организма.

По мере созревания ооцита (стадии 7-8) могут происходить упорядоченные внутриклеточные перемещения импортированной РНК, например между его полюсами. На заключительных стадиях созревания (10-14) питающие клетки усиливают синтез РНК и их перенос в ооциты на фоне перетекания ооплазмы, что сопровождается их специфическим внутриклеточным распределением. Питающие клетки связаны только с передними полюсами ооцитов, и часть поступающих из них РНК специфически удерживается после их вхождения и остается в этой зоне ооцитов. Избирательную защиту РНК в плазме переднего полюса ооцитов обеспечивают полярные гранулы.

Активация ооцитов после оплодотворения сопряжена с упорядоченными перестройками цитоскелета. Ядра зиготы дрозофилы претерпевают 13 синхронных делений без цитокинеза, образуя зародыш с несколькими тысячами ядер, окруженными общей цитоплазмой. Такой синцитий существует до конца 14-го клеточного цикла, в котором -6000 ядер локализованы вблизи оболочки - кортекса. Затем впячивания мембраны формируют индивидуальные клетки бластодермы в которой переднезадняя и дорсовентральная полярности положения клеток уже определены, и они содержат требуемые для дальнейшего развития материнские РНК. На стадии синцития и клеточной бластодермы начинается основной зиготный синтез РНК.

Многочисленные данные указывают на то, что направленный перенос РНК к специфическим внутриклеточным микрокомпартментам осуществляется при участии и микротрубочек, и микрофиламентов цитоскелета эукариотических клеток. Такие выводы основаны, прежде всего, на результатах, полученных с использованием агентов, специфически нарушающих нормальное формирование частей цитоскелета, построенных из микротрубочек (колхицин, нокодазол, таксол) или микрофиламснтов (цитохолазины).

Захват и фиксация РНК в сайтах внутриклеточной локализации. На стадии 10В оогенеза дрозофилы происходит перестройка микротрубочек цитоскелета ооцита, которые формируют параллельные ряды вблизи его поверхности в субкортикальной зоне. Это индуцирует начало упорядоченного движения ооплазмы, в которое вовлекаются и многочисленные молекулы мРНК, поступающие в ооцит из питающих клеток. В данном случае РНК, которые специфически накапливаются в задней части ооцита, как бы отфильтровываются из потоки ооплазмы путем захвата расположенными там специализированными белками.

В захвате и удержании РНК на заднем полюсе ооцита дрозофилы также участвуют полярные гранулы - большие рибонуклеопротеиновые органеллы, не ассоциированные с клеточными мембранами. Доставляемая к ним в потоке ооплазмы РНК часто находится в составе больших транспортных частиц в комплексе с белками.

Все цис-действующие локализующие последовательности, обнаруженные до настоящего времени, расположены в 3'UTR их РНК. По аналогии с сигнальными аминокислотными последовательностями белков, наличие таких нуклеотидных последовательностей часто оказывается достаточным для направленной внутриклеточной доставки соответствующих РНК.

В ряде случаев направленный транспорт мРНК (например bicoid) обеспечивается несколькими дискретными последовательностями, расположенными в 3'UTR. У этой мРНК локализующий элемент BLE1 длиной в 50 нуклеотидов является необходимым и достаточным для направленного транспорта мРНК, если он присутствует в виде двух копий. С такой двойной последовательностью взаимодействует белок Staufen, специфичный в отношении двухцепочечных РНК, который фиксирует РНК bicoid в передней зоне ооцита на поздних стадиях оогенеза.

Кажущаяся функциональная избыточность характерна для регуляторных элементов ряда других РНК, содержащих несколько таких последовательностей, каждая из которых способна обеспечивать внутриклеточный транспорт РНК независимо от других. Действие некоторых множественных локализующих элементов мРНК оказывается аддитивным. Иными словами, разные сочетания таких последовательностей 3'UTR обеспечивают различную специфичность накопления РНК в цитоплазме.

В ооцитах многие мРНК не транслируются до тех пор, пока они не доставлены к месту постоянной локализации. В частности, синтез белка мРНК oskar, регулируется по такому механизму. В норме трансляция этой мРНК начинается лишь после перемещения к заднему полюсу ооцита. Трансляция нелокализованной мРНК oskar сопровождается многочисленными дефектами развития зародыша насекомого. Контроль трансляции и локализация, мРНК обеспечиваются разными последовательностями, расположенными в ее 3'UTR.

Функции локализованных РНК. Направленная доставка и накопление РНК в определенных частях эукариотических клеток являются мощным механизмом, регулирующим экспрессию соответствующих генов в онтогенетическом развитии организмов.

1. Прежде всего, локализованные РНК обеспечивают высокий уровень синтеза кодируемых ими белков в определенных частях клеток.

2. Одновременно с этим предотвращается трансляция этих мРНК в других внутриклеточных компартментах как путем их избирательной деградации, так и с участием белковых репрессоров трансляции.

3. Локализуемые изоформы мРНК с разной специфичностью внутриклеточной доставки, которые могут образовываться в результате альтернативного сплайсинга, обеспечивают синтез соответствующих изоформ белков в разных клетках или цитоплазматических доменах одной и той же клетки.

4. При этом асимметричное внутриклеточное распределение мРНК, в свою очередь, может приводить к неравномерному их распределению в дочерних клетках, получающих специфические наборы мРНК. Это может быть одним из ключевых моментов последующей дифференцировки клеток-потомков.

Ряд РНК, локализующихся в цитоплазматических компартментах, не кодируют белки. Во многих случаях их роль не ясна. Полагают, что они могут выполнять структурные функции в локализующих РНП-частицах или органеллах, например зародышевых гранулах ооцитов. Кроме того эти РНК могут участвовать в фиксации локализуемых РНК в местах их накопления в цитоплазме.

От молекул ооцита дрозофилы к зародышу. Не все мРНК ооцита имеют своим источником питающие клетки. В частности, ген gurken, играющий ключевую роль в становлении переднезадней и дорсовентральной осей ооцита, транскрибируется в его ядре. Для этой РНК характерна строго выраженная внутриклеточная локализация. На стадии 7 она ассоциирована только с задним полюсом ооцита, на стадии 8 - с обоими полюсами, а на стадиях 8-10 - с переднеспинной зоной. Белок Gurken является секретируемым фактором роста, который передает ключевой сигнал к окружающим ооцит фолликулярным клеткам, обеспечивающим становление осей ооцита. Сначала сигнал в виде секретируемого фактора поступает к фолликулярным клеткам, окружающим заднюю часть ооцита, что обеспечивается соответствующей локализацией мРНК gurken. Это приводит к становлению переднезадней оси ооцита и поляризации его цитоскелета, построенного из микротрубочек, что является важнейшим условием дальнейшей локализации РНК. Сигнал в виде вышеупомянутого фактора роста, поступающий из переднеспинной части ооцита к питающим клеткам, приводит к становлению дорсовентральной оси яйцевой камеры. Локализация мРНК gurken в переднеспинной части ооцита, в свою очередь, является следствием зависимого от цитоскелета перемещения ядра ооцита в эту зону цитоплазмы.

мРНК bicoid начинает транслироваться в месте ее локализации на переднем полюсе раннего зародыша вскоре после оплодотворения. Поскольку на этой стадии зародыш представляет собой бесклеточный синцитий с многими ядрами, образующийся белок диффундирует к заднему полюсу зародыша, образуя градиент концентрации вдоль его переднезадней оси, которая максимальна в его передней части. Белок Bicoid является гомеодоменным фактором транскрипции. Он активирует синтез РНК соответствующих генов только в ядрах, расположенных в передней половине зародыша. При этом активация генов зависит от концентрации фактора.

Например, ген hunchback содержит высокоаффинный сайт связывания белка Bicoid и активируется как в местах высокой, так и низкой концентраций фактора. В отличие от этого такие гены, как orthodenticle и empty spiracles, обладают низкоаффинными сайтами связывания фактора и начинают транскрибироваться лишь в ядрах, расположенных ближе к переднему концу зародыша. По такому механизму формируются островки дифференцирующихся клеток передней части зародыша с разными группами экспрессирующихся генов.

Однако это не все. Белок Bicoid обладает способностью функционировать не только как фактор транскрипции, но и как репрессор трансляции определенных РНК (например, caudal), с которыми он непосредственно взаимодействует. В результате передняя локализация мРНК bicoid приводит к образованию обратного градиента концентрации белка Caudal, РНК которого исходно не локализована. В итоге, пик концентрации этого белка имеет место в задней части зародыша, где он также определяет наборы транскрибирующихся генов.

Приведенные примеры охватывают далеко не все механизмы, детерминирующие дифференцировку клеток в развивающемся зародыше, и служат для иллюстрации ключевой роли посттранскрипционной внутриклеточной локализации мРНК и контроле экспрессии генов, транскриптами которых они являются. Как можно видеть уже из этих примеров, посттранскрипционное перемещение и метаболизм РНК являются важными элементами регуляции экспрессии генов в онтогенезе. Ниже некоторые другие аспекты метаболизма РНК как регулятора экспрессии генов буду рассмотрены более подробно.