- •1.Резисторы.
- •2.Катушки индуктивности.
- •3.Конденсаторы.
- •4.Полупроводники.
- •6.Пробой p-n-перехода.Виды пробоев
- •7.Емкость p-n-перех.
- •8.П/п.Диоды, схема замещ, классиф, уго.
- •9.Выпрямительные диоды.
- •10.Высокочастотные диоды.
- •11.Импульсные диоды.
- •12.П/п стабилитроны и стабисторы.
- •13.Туннельные диоды.
- •14.Диоды Шоттки.
- •15.Общие сведения от тр-рах.Маркировка.Уго.
- •16.Принцип действия транз-ра и его стат парам.
- •17.Схемы включения тр и дифференц парам-ры.
- •18. Статические вах тр-ра в схеме с об; модуляция шири-ны базы.
- •19. Статические вах тр-ра в схеме с оэ.
- •20. Схемы замещения транзисторов.
- •21. Усилители эл. Сигналов. Классиф-ция.
- •22. Характеристики и параметры усилителей.
- •23. Обратные связи в усилителях.
- •24. Усилитель на биполярном транзисторе на схеме с оэ.
- •25. Расчет усил-ля с оэ с помощью эквив-ной схемы в области средних частот.
- •26. Усилитель по схеме с об.
- •27. Усилитель по схеме с ок.
- •28. Многокаскадные усилители с r-c связью.
- •29. Усилители постоянного тока (упт).
- •30. Дифференциальные усилительные каскады.(дук)
- •31. Операционные усилители.(оу)
- •32. Основные хар-ки и пар-ры оу(Операционный усилитель).
- •33. Использование оу для реализации звеньев систем регулирования.
- •34. Инверт сумматор, интегратор, дифференциатор на оу.
- •35. Генераторы синусоидальных колебаний.
- •36. Частотно-зависимые rc- цепи и rc-генераторы на основе оу.
- •37. Импульсные сигналы (ис).
- •38. Ключевой режим работы транзистора.
- •39. Импульсный режим оу. Компараторы.
- •40. Триггер Шмитта на основе оу.
- •41. Симметричный мультивибратор на основе оу.
- •42. Несимметричный мультивибратор на основе оу.
- •43. Одновибраторы на основе оу.
- •44. Блокинг-генераторы.
- •46. Гпн со стабилизацией тока заряда.
- •47. Гпн на основе оу.
- •48. Полупроводниковые стабилизаторы напряжения (псн). Классификация и параметры.
- •49. Компенсационные стабилизаторы постоянного напряжения.
- •50. Простейший транзисторный стабилизатор.
- •51. Построение регулирующих элементов псн.
- •52. Стабилизаторы напряжения на основе оу.
- •53. Двухполярные псн на основе оу.
- •54. Защита псн на основе оу от перегрузок по току и кз в нагрузке.
20. Схемы замещения транзисторов.
СЗТ могут соответство-вать их физ-им пар-рам, а также пар-рам, харак-щих их как линей-ный 4-х полюсник. Достоинство физ-их пар-ров в том, что они наглядны и непоср-но хар-ют физ-ие св-ва 3-х слойной п/п структуры. Их можно рассчитать по геометрии слоев и пар-рам материала, но их прямое изменение невозможно. Дост-вом пар-ров 4-х полюсника явл-ся то, что их можно измерить. СЗ позволяют упростить расчеты электронных схем. СЗТ в физ-их пар-рах предс-ся в виде Т-образной схемы, отражающей его структуру. Для включ тр-ра с ОБ и ОЭ они имеют вид:
Эти схемы справедливы для лин-ых уч-ков статич-ких ВАХ тр-ра, когда его пар-ры можно считать неизменными, т.е. для малых изменений тока и напряж-ия. Пар-ры СЗ с ОБ: 1) rэ=dUэб/diэ=φт/Iэ (Uкб=const) дифференц-ое сопр-ие эммит-го перехода позволяет учесть связь м/у напряж-ми на Э переходе и протекающим ч/з него Iэ. Его вел-на, в зависимости от Iэ, м/б от единиц до десятков Ом; 2) объемное сопр Б rб. Оно опр-ся в направ-ии прохождения Б тока в слое Б от границы Э перехода. rб>rэ и составляет сотни Ом; 3) эквивал-ый источник тока αIэ. Он учитывает транзитную составляющую приращения Iэ, проходящую ч/з Б в К; 4) rк=dUкб/diк (Iэ=const). Дифферен-ое сопр-ие К перехода (включ-ся в обратном направлении). Оно учитывает изменение Iк с изменением Uкб вследствие модуляции ширины Б. Его вел-на от 0,5 до 2 мОм; 5) источник напряж-ия μUкб. Он опр-ет напряж-ие внутри полож-ой обратной связи и отражает влияние эффекта модуляции Б на вх-ую цепь тр-ра. Т.к. μ мало (10-4…10-3), то этот источник часто в схему не входит; 6) емкости Э и К переходов Сэ, Ск. Дифф-ая и барьерная емк-ти Э перехода больше таковых К перехода, но т.к. Сэ зашунтировано значительно меньшим сопр-ем (rэ), чем Ск зашунтир-но (rк), то начиная с десятков кГц емкость Ск приходится учитывать, а Сэ на этих частотах пренебрегают; 7)α=di/d…?… кб=const) диффер-ый коэф-т передачи тока. Зависит от частоты усиливаемого сигнала. В обл-ти повышенных частот, где начинает сказываться время прохождения дырок ч/з Б, Iк и Iб отличаются по фазе от Iэ, а коэф-т α умен-ся. Одним из основных пар-ров тр-ра явл-ся граничная частота fα, при к-ой модуль комплексного коэф тока α ум-ся в √2 раз. В Т-образной СЗТ с ОЭ пар-ры rэ и rб имеют тот же физ-ий смысл, что и в схеме с ОБ. Источник тока здесь показан, как βIб, т.к. вх-ым током в этой схеме явл-ся Iб. Сопр-ие К перехода r*к=rк/(β+1), аналогично С*к=Ск(β+1) и влияние ее в обл-ти повышенных частот значительно больше, чем Сэ, поэтому Сэ обычно не учитывают. Дифф-ый коэф-т передачи тока с ОЭ также частотнозависимый. Граничная частота fβ=fα/(β+1), т.е. частотные св-ва тр-ра в схеме с ОЭ хуже, чем в схеме с ОБ.
21. Усилители эл. Сигналов. Классиф-ция.
Электронным усилителем наз устр-во, позволяющее преобразовывать вх-ые электр-ие сигналы в сигналы большей мощности на выходе. Это преобразование совершается за счет энергии источника питания. Все усил-ли делятся на 2 класса с лин-ым и нелин-ым режимом работы, наз-ся лин-ые и нелин-ые усил-ли. Лин-му усил-лю предъявляется требование min искажения усиливаемого сигнала, что выполняется при пропорциональной передаче усил-ля мгновенных значений тока или напр-ия. Коэф-т усиления при этом рассчитывают по амплитудным или в случае синусоидального сигнала действующим значениям тока и напряж-ия. Важнейшим показателем лин-ым усил-ем явл-ся АЧХ (амплитудно-частотная характеристика), показывающая завис-сть модуля коэф-та усиления по напр-ию, опре- деленного для синусоидального сигнала от частоты. В зависимости от вида АЧХ лин ус подразделяются на: 1) усил-ли пост-го тока (УПТ) с рабочим диапазоном частот fр от 0 до 103…108 Гц; 2) усил-ли звуковых частот с fр от десятков Гц до 15 -25 кГц; 3) усил-ли выс частот с fр от десятков кГц до сотен МГц; 4) широкополосные усил-ли с fр от десяток Гц до сотен МГц; 5) узкополосные усил-ли с узкой полосой fр. Нелин-ый усил-ль хар-ся зависимостью коэф-та усиления от вел-ны вх-го сигнала. Такие усил-ли применяются для преобразования усиливаемого сигнала, например sin-ого в импульсный (усил-ли-ограничители). Они используются и для усиления импульсов (нелин-ые импульсные усил-ли). Как правило, усил-ль состоит из нескольких каскадов, каждый из к-ых выполняет свои ф-ции. По кол-ву каскадов усил-ли делятся на одно- и многокаскадные. Соединения каскадов осущ-ся либо только по переменному I, либо галиванически. В посл-м случае с выхода предыд-го на вход последующего каскада передается как переменная, так и пост-ая составляющая U или I. Такой класс усил-лей наз-ся усил-ми с непосредственной связью. Частным их случаем явл УПТ. В УПТ для связи каскадов по перемен-му I и разделения по пост-му I используются различ-ые эл-ты, что позволяет классифицировать усил-ли след-им образом: 1) усил-ли с RC-связью, где разделительным элементом явл-ся конденсатор; 2) усил-ли с трансформаторной связью; 3) усил-ли со связью ч/з колебательный контур. В зав-ти от назначения усил-ли различают: 1) усил-ль напряж-ия, на выходе к-ых получают усиленное напряж-ие, повторяющее по форме вх-ых сигналов; 2) усил-ль тока; 3) усил-ль мощности, позволяющие получить значит усил мощности вх-го сигнала.