Минералогия ответы
.pdfvk.com/club152685050 | vk.com/id446425943
образование нонтронита и накопление никеля (NiO до 2,5%): окремнения (кварц, опал, халцедон). Зона конечного гидролиза и окисления сложена гидрогётитом (охристым), гётитом, магнетитом, окислами и гидроокислами марганца (никель и кобальтсодержащими). С процессами В. этого типа пород связаны крупные месторождения никеля, кобальта, магнезита и природно-легированных железных руд.
На карбонатитах, первично состоящих более чем на 90% из кальцита, анкерита или сидерита и небольшого количества минералов-примесей (пироксенов, амфиболов, тантало-ниобатов и редкоземельных минералов), конечные продукты В. становятся рыхлыми. В результате окисления карбонатов накапливаются гидроокислы железа, а окислы кальция и магния подвергаются существенному выносу, что приводит к увеличению содержания минералов-примесей, устойчивых в гипергенных условиях. В связи с этим свежие карбонатиты даже при ничтожном содержании ниобия, тантала, редких земель и фосфора при В. могут дать промышленные месторождения этих элементов. При В. угля (физическом) происходят его разрыхление до образования угольной сажи, потеря блеска, изменение мощности пластов; в составе углей при химическом В. содержание углерода, водорода уменьшается, а кислорода в органической массе увеличивается, кроме того, увеличивается влажность угля, понижается способность его к спеканию, уменьшается теплопроводность.
В тех случаях, когда продукты В. не остаются на месте своего образования, а уносятся с поверхности выветривающихся пород водой или ветром, нередко возникают своеобразные формы рельефа, зависящие как от характера В., так и от свойств горных пород, в которых процесс как бы проявляет и подчеркивает особенности их строения. Для изверженных пород (гранитов, диабазов и др.) характерны массивные округлённые формы В.; для слоистых осадочных и метаморфических — ступенчатые (карнизы, ниши и т.п.). Неоднородность пород и неодинаковая устойчивость их различных участков против В. ведёт к образованию останцов в виде изолированных гор, столбов, башен и т.п. Во влажном климате на наклонных поверхностях однородных сравнительно легко растворимых в воде пород, например, известняков, стекающие воды разъедают неправильной формы углубления, разделённые острыми выступами и гребнями, в результате чего образуется неровная поверхность, известная под названием карров. В процессе перерождения остаточных продуктов В. образуется много растворимых соединений, которые сносятся грунтовой водой в водные бассейны и входят в состав растворённых солей или выпадают в осадок. Процессы В. приводят к образованию различных осадочных пород и многих полезных ископаемых: каолинов, охр, огнеупорных глин, песков, руд железа, алюминия, марганца, никеля, кобальта, россыпей золота, платины и др., зон окисления колчеданных месторождений с их полезными ископаемыми и др.
№10 Условия образования и типичные минералы осадочных процессов Осадочные процессы происходят в водных средах: реках, озерах и морях. В
морских бассейнах эти процессы во все геологические эпохи приводили к образованию огромной мощности толщ осадочных горных пород. Среди этих образований различают механические и химические осадки.
Механические осадки образуются при размыве продуктов выветривания и переотложении водными потоками химически стойких минералов и обломков пород в виде галечника, гравия, песков и песчаных глин в речных долинах и водных бассейнах. Если размыву подвергаются продукты выветривания месторождений или пород, содержащих химически стойкие ценные минералы, то они в результате повторных перемывов и перераспределения материала по удельному весу в речных долинах образуют россыпи (рис. 58), имеющие часто промышленное значение. Таковы, например, россыпные месторождения золота, платины, алмазов и др.
vk.com/club152685050 | vk.com/id446425943
В процессе накопления механических осадков по существу не происходит образования каких-либо новых минералов. Лишь в древних россыпях иногда устанавливаются некоторые позднейшие химические изменения в обломочном материале.
Химические осадки возникают главным образом в озерах и морских бассейнах. Выпадение осадков может происходить различными путями: либо путем кристаллизации насыщенных солями растворов, либо путем осаждения свертывающихся в виде гелей коллоидных образований, либо, наконец, путем накопления продуктов жизнедеятельности органического мира и самих органических остатков.
1.Образование кристаллических осадков, называемых эвапоритами, наблюдается во многих усыхающих озерах, в которых в условиях сухого жаркого климата поверхностное испарение превалирует над притоком пресной воды.
Кристаллизация солей наступает при некотором пересыщении водных растворов. Последовательность выделения минералов при прогрессирующем испарении растворителя (Н2О) определяется двумя главными факторами равновесия системы: составом растворов, вернее, соотношением концентраций компонентов, входящих в систему, и температурой растворов, при которой происходит кристаллизация. Условия равновесия сернокислых и хлористых солей Са, Mg, К и Na, встречающихся в морской воде, детально изучены при различных концентрациях и температурах Вант-Гоффом, Н. С. Курнаковым и многими другими.
2.Образование коллоидальных осадков в озерных и морских бассейнах много сложнее, и не все стороны этого явления изучены в достаточной степени. Установлено, что некоторые образующиеся при выветривании соединения переносятся текучими водами не только в виде истинных растворов, но также в виде коллоидных растворов — золей, устойчивых в пресных водах. Эти растворы, попадая с поверхностными водами в морские бассейны, подвергаются коагуляции под влиянием электролитов, содержащихся
вбольших количествах в морских водах в виде ионов растворенных солей.
Так ведут себя коллоидальные растворы окислов железа, марганца, кремния и др. Образующиеся при коагуляции коллоидных растворов микродисперсные
минеральные осадки вместе с приносимыми речными водами глинистыми частицами, мелким обломочным материалом и остатками морских организмов отлагаются на дне прибрежных зон бассейнов в виде прослоев или более мощных правильных по форме пластов. С течением времени в этих осадках происходят некоторые преобразования (диагенезис) и превращение их в плотные массы.
На примере марганцевых осадочных месторождений выяснено закономерное изменение парагенетических ассоциаций минералов в осадках в зависимости от физикохимических условий формирования осадков на дне бассейнов. В прибрежных мелководных участках распространены наиболее богатые кислородом соединения четырехвалентного марганца, которые по мере удаления от береговой линии постепенно сменяются карбонатными соединениями двухвалентного марганца в сопровождении редких сульфидов железа. В мелководных участках осадконакопление, очевидно, происходило в условиях доступа кислорода, растворенного в морской воде, до некоторой глубины, тогда как в более глубоководных участках имели место недостаток кислорода, разложение органических остатков с образованием углекислоты и отчасти сероводорода, за счет которых, очевидно, и образовались карбонаты и сопровождающие их сернистые соединения. В результате возникли так называемые фации различных по составу руд (окисных и карбонатных). По-видимому, аналогичные же соотношения различных по составу осадков существуют и в месторождениях железа, для которых давно уже известны фации окисных, силикатных и карбонатных руд.
3. К органогенным, или биогенным, осадкам, образующимся в результате сложных процессов жизнедеятельности организмов, относятся известняки, состоящие из скелетных образований морских животных, диатомиты, сложенные преимущественно кремнистыми скелетами диатомей, каустобиолиты (от греч. каустос — горючий), возникшие главным
vk.com/club152685050 | vk.com/id446425943
образом за счет растительных и отчасти животных организмов (например, ископаемые угли, горючие сланцы, нефти, горючие газы, твердые битумы и пр.).
Органогенные осадки могут возникать путем накопления скелетов отмирающих животных (ракушняки) или тканей высших или низших растений (торф, сапропель). Они могут также являться результатом самой жизнедеятельности организмов, например анаэробных бактерий, разлагающих органические остатки или сульфаты, в процессе чего в конце концов образуются скопления серы. Наконец, за счет продуктов деятельности бактерий могут возникать желвакоподобные образования, как это в лабораторных условиях было доказано для ферробактерий.
При последующем перерождении одни из этих осадков превращаются в неорганические продукты (например, известняки, фосфориты), другие же остаются органическими соединениями (каменные угли и др.).
№11 Условия образования и типичные минералы метаморфогенных процессов
Метаморфогенные месторождения, залежи полезных ископаемых, образовавшиеся в процессе метаморфизма горных пород, в обстановке высоких давлений и температур. Разделяются на метаморфизованные и метаморфические.
Метаморфизованные месторождения возникают вследствие процессов регионального и локального метаморфизма полезных ископаемых. Тела полезных ископаемых деформируются и приобретают черты, свойственные метаморфическим породам, — развиваются сланцеватые и волокнистые текстуры, гранобластические структуры. Минералы малой плотности заменяются минералами высокой объёмной массы. Водосодержащие минералы вытесняются безводными, аморфное вещество раскристаллизовывается.
Метаморфические месторождения возникают вновь в процессе метаморфизма горных пород. Известняки превращаются в мраморы, песчаники — в кварциты, глинистые породы — в кровельные сланцы, а при высокой степени метаморфизма — в залежи андалузита, кианита и силлиманита, на месте бокситовых отложений возникают наждаки.
№12 Минеральный состав кислых и ультраосновных горных пород
Кислые горные породы
Главные: Кварц, ортоклаз, микроклин, плоагиоклаз, роговая обманка, мусковит. Второстепенные: Магнетит, циркон, ортит, сфен, пирит, Вторичные гидротермные: Сфен, топаз, флюорит, турмалин, мусковит, хлоританотаз. Вторичные экзогенные: каолинит, опал, кальцит, бурый железняк.
Ультраосновные горные породы
Главные: Оливин, пироксен, актинолит.
Второстепенные: роговая обманка, основной плагиоклаз , магнетит, ильменит, хромит, пироп, перовскит, анортит Вторичные гидротермальные: серпентин, хризотил – асбест, брусит, магнетит
Вторичные экзогенные: кварц, халцедон, опал, бурый железняк.
№13 Минеральный состав кислых и щелочных пегматитов
Гранитные пегматиты Частой линий
А) формация полевых шпатов, мусковита, и редкоземельных минералов. Главные: Кварц, полевые шпаты, мускавит, альбит Второстепенные: биотит, турмалин, апатит, циркон Э гранир, магнетит, ортит, сфен, танталит
vk.com/club152685050 | vk.com/id446425943
Б) Формации редкоземельных минералов.
Главные: Микроклин, амазонит, кварц, альбит, плагоклаз, биотит, мусковит Второстепенные: Ортит, марион, топаз, аметист
Линий скрещивания А) Биотит, флогопит, антимонит, хлорит,тальк
Второстеенные: изумруды, александрит Б) Формация корундов Главные: Корунд, плагиоклазы
Второстепенные: Гранаты, турмалин, Биотит, рутил, диаспор, вермикулит, тальк Щелочные плагиоклазы:
Главные: Нефелин, микроклин, эгирин, эвдиалит Второстепенные: Эвдиалит, апатит, содалит, пирохлор.
№14 Минеральный состав грейзенов и скарнов
Грейзены:
Кварц, мусковит, литиевые слюды, турмалин, топаз, флюорит, рутил Ассоциируют касситерит, вольфрамит, шеелит, арсенопирит, молибденит, сфалерит Скарны:
Основные: кальцит, диопсид, геденбергит, магнетит, гранат, халькопирит, сфалерит, галенит Второстепенные: роговая обманка, хлорит, эпидот, флюорит, кварц, везувиан, гематит,
пирит, кобальтин, висмутин, сидерит, касситерит.
№15 Минеральный состав высоко-, средне, - низкотемпературных гидротермальных тел
Высокотемпературные:
Основные: кварц, топаз, касситерит, флюорит, пирротин, биотит, висмутин Второстепенные: блеклая руда, золото, турмалин, магнетит. Среднетемпературные:
Основные: кварц, турмалин, доломит, пирит, золото, галенит, хлорит, сфалерит, молибденит, касситерит, серебро самородное, барит Второстепенные: шеелит, актинолит, гематит, арагонит, брусит, перовскит, галенит, уранит, самородный висмутин, халцедон.
Низкотемпературные:
Основные: кальцит, кварц, халькопирит, борнит, халькозин, реальгар, золото самородное, медь, опал, пирит, антимонит Второстепенные: пирит, блеклая руда, хлорит, гематит, арсенопирит, марказит, эпидот.
№16 Минеральный состав кор выветривания
В периоды тектонического покоя в районах влажного и тёплого климата происходит формирование К. в. наибольшей мощности. Разложение большой массы органических веществ приводит к образованию CO2 и органических кислот, которые, просачиваясь из почвы в К. в., производят глубокое разложение горных пород и кислое выщелачивание растворимых продуктов выветривания. Из К. в. выносится большинство подвижных элементов — Ca, Mg, Na, К, Si, многие редкие металлы. К. в. относительно обогащается наименее подвижными элементами — Fe, Al, Ti, Zr и др. с образованием гидроокислов Fe и Al, каолинита, галлуазита и др. глинистых минералов. Гидроокислы Fe придают К. в. красную и бурую окраску. В условиях спокойного тектонического режима во влажных тропиках К. в. достигает мощности десятков м, а в зонах разломов — сотен м.
vk.com/club152685050 | vk.com/id446425943
В зависимости от минерального состава различают ряд типов выщелоченной К. в. (каолиновая К. в., латеритная и т. д.).
№17 Условия образования зоны вторичного сульфидного обогащения
Ниже уровня грунтовых вод находится зона цементации или зона вторичного сульфидного обогащения . Сульфаты реагируют здесь с первичными рудами, в результата чего образуются вторичные сульфиды:
FeS2 + CuSO4 + H2O => Cu2S + CuS + FeSO4 + H2SO4 (пирит => халькозин + ковеллин)
№18 Минеральный состав осадочных образований Осадочные процессы происходят в водных средах: реках, озерах и морях. В
морских бассейнах эти процессы во все геологические эпохи приводили к образованию огромной мощности толщ осадочных горных пород. Среди этих образований различают механические и химические осадки.
Механические осадки образуются при размыве продуктов выветривания и переотложении водными потоками химически стойких минералов и обломков пород в виде галечника, гравия, песков и песчаных глин в речных долинах и водных бассейнах. Если размыву подвергаются продукты выветривания месторождений или пород, содержащих химически стойкие ценные минералы, то они в результате повторных перемывов и перераспределения материала по удельному весу в речных долинах образуют россыпи (рис. 58), имеющие часто промышленное значение. Таковы, например, россыпные месторождения золота, платины, алмазов и др.
В процессе накопления механических осадков по существу не происходит образования каких-либо новых минералов. Лишь в древних россыпях иногда устанавливаются некоторые позднейшие химические изменения в обломочном материале.
Химические осадки возникают главным образом в озерах и морских бассейнах. Выпадение осадков может происходить различными путями: либо путем кристаллизации насыщенных солями растворов, либо путем осаждения свертывающихся в виде гелей коллоидных образований, либо, наконец, путем накопления продуктов жизнедеятельности органического мира и самих органических остатков.
1.Образование кристаллических осадков, называемых эвапоритами, наблюдается во многих усыхающих озерах, в которых в условиях сухого жаркого климата поверхностное испарение превалирует над притоком пресной воды.
Кристаллизация солей наступает при некотором пересыщении водных растворов. Последовательность выделения минералов при прогрессирующем испарении растворителя (Н2О) определяется двумя главными факторами равновесия системы: составом растворов, вернее, соотношением концентраций компонентов, входящих в систему, и температурой растворов, при которой происходит кристаллизация. Условия равновесия сернокислых и хлористых солей Са, Mg, К и Na, встречающихся в морской воде, детально изучены при различных концентрациях и температурах Вант-Гоффом, Н. С. Курнаковым и многими другими.
2.Образование коллоидальных осадков в озерных и морских бассейнах много сложнее, и не все стороны этого явления изучены в достаточной степени. Установлено, что некоторые образующиеся при выветривании соединения переносятся текучими водами не только в виде истинных растворов, но также в виде коллоидных растворов — золей, устойчивых в пресных водах. Эти растворы, попадая с поверхностными водами в морские бассейны, подвергаются коагуляции под влиянием электролитов, содержащихся
вбольших количествах в морских водах в виде ионов растворенных солей.
Так ведут себя коллоидальные растворы окислов железа, марганца, кремния и др. Образующиеся при коагуляции коллоидных растворов микродисперсные
минеральные осадки вместе с приносимыми речными водами глинистыми частицами,
vk.com/club152685050 | vk.com/id446425943
мелким обломочным материалом и остатками морских организмов отлагаются на дне прибрежных зон бассейнов в виде прослоев или более мощных правильных по форме пластов. С течением времени в этих осадках происходят некоторые преобразования (диагенезис) и превращение их в плотные массы.
На примере марганцевых осадочных месторождений выяснено закономерное изменение парагенетических ассоциаций минералов в осадках в зависимости от физикохимических условий формирования осадков на дне бассейнов. В прибрежных мелководных участках распространены наиболее богатые кислородом соединения четырехвалентного марганца, которые по мере удаления от береговой линии постепенно сменяются карбонатными соединениями двухвалентного марганца в сопровождении редких сульфидов железа. В мелководных участках осадконакопление, очевидно, происходило в условиях доступа кислорода, растворенного в морской воде, до некоторой глубины, тогда как в более глубоководных участках имели место недостаток кислорода, разложение органических остатков с образованием углекислоты и отчасти сероводорода, за счет которых, очевидно, и образовались карбонаты и сопровождающие их сернистые соединения. В результате возникли так называемые фации различных по составу руд (окисных и карбонатных). По-видимому, аналогичные же соотношения различных по составу осадков существуют и в месторождениях железа, для которых давно уже известны фации окисных, силикатных и карбонатных руд.
3. К органогенным, или биогенным, осадкам, образующимся в результате сложных процессов жизнедеятельности организмов, относятся известняки, состоящие из скелетных образований морских животных, диатомиты, сложенные преимущественно кремнистыми скелетами диатомей, каустобиолиты (от греч. каустос — горючий), возникшие главным образом за счет растительных и отчасти животных организмов (например, ископаемые угли, горючие сланцы, нефти, горючие газы, твердые битумы и пр.).
Органогенные осадки могут возникать путем накопления скелетов отмирающих животных (ракушняки) или тканей высших или низших растений (торф, сапропель). Они могут также являться результатом самой жизнедеятельности организмов, например анаэробных бактерий, разлагающих органические остатки или сульфаты, в процессе чего в конце концов образуются скопления серы. Наконец, за счет продуктов деятельности бактерий могут возникать желвакоподобные образования, как это в лабораторных условиях было доказано для ферробактерий.
При последующем перерождении одни из этих осадков превращаются в неорганические продукты (например, известняки, фосфориты), другие же остаются органическими соединениями (каменные угли и др.).
№19 Минеральный состав метаморфических пород разных типов
Метаморфогенные месторождения, залежи полезных ископаемых, образовавшиеся в процессе метаморфизма горных пород, в обстановке высоких давлений и температур. Разделяются на метаморфизованные и метаморфические.
Метаморфизованные месторождения возникают вследствие процессов регионального и локального метаморфизма полезных ископаемых. Тела полезных ископаемых деформируются и приобретают черты, свойственные метаморфическим породам, — развиваются сланцеватые и волокнистые текстуры, гранобластические структуры. Минералы малой плотности заменяются минералами высокой объёмной массы. Водосодержащие минералы вытесняются безводными, аморфное вещество раскристаллизовывается.
Метаморфические месторождения возникают вновь в процессе метаморфизма горных пород. Известняки превращаются в мраморы, песчаники — в кварциты, глинистые породы — в кровельные сланцы, а при высокой степени метаморфизма — в залежи андалузита, кианита и силлиманита, на месте бокситовых отложений возникают наждаки.
vk.com/club152685050 | vk.com/id446425943
№20 Роль летучих компонентов в процессах минералообразования
На больших и средних глубинах отделяющиеся от расплава летучие компоненты (включая воду) представляют собой флюид (надкритический раствор), находящийся в относительном равновесии с кристаллизующимися из расплава минералами. Однако такой флюид не равновесен со вмещающими породами и поэтому является по отношению к ним агрессивной средой. В этом случае флюид устремляется к вмещающим породам и, химически реагируя с ними, производит так называемый контактовый метасоматоз. При этом в боковых породах (в кровле), пропитывающихся растворами, протекают химические реакции. Степень преобразования и состав получающихся продуктов в значительной мере зависят не столько от температуры, сколько от химической активности раствора и состава реагирующих с ними пород. Наблюдениями установлено, что наиболее интенсивные изменения происходят среди контактирующих с магматическими массивами известняков и других известковистых пород. В результате реакций в этих случаях путем замещения, или, как говорят, метасоматоза, образуются так называемые скарны, состоящие преимущественно из силикатов Са, Fe, Аl и др. Химический состав их показывает, что источником для их образования послужили как вмещающие породы (известняки, доломиты и др.), так и составные части магмы. Характерно, что вдоль контакта, как это показали наши ученые (А. Н. Заварицкий и Д. С. Коржинский), одновременно происходит изменение и в интрузивных породах, успевших застыть к моменту проявления описываемого процесса. При этом минералы магматических пород замещаются новообразованиями, состав которых показывает, что имеет место привнос элементов из карбонатных толщ (Са, Mg). В связи со скарнами нередко образуются крупные месторождения железа (гора Магнитная на Ю. Урале), иногда вольфрама, молибдена и некоторых других металлов.
Воздействие обогащенных фтором и редкими элементами флюидов на сложенные терригенными осадочными породами породы кровли гранитоидных интрузий приводит к образованию грейзенов, существенно кварцевых пород, обогащенных слюдами, топазом, бериллиевыми минералами и флюоритом. Грейзены нередко вмещают руды вольфрама, молибдена, олова и висмута.
Втом случае, когда магмы извергаются на земную поверхность, огромные количества летучих соединений (в виде так называемых эксгаляций) выносятся в атмосферу. Однако в трещинах остывших лав, на стенках кратеров вулканов и в окружающих других породах часто можно наблюдать образование продуктов возгона (сублимации) таких минералов, как самородная сера, нашатырь, гематит, киноварь, минералы бора и др. Отмечаются и метасоматические реакции, но они выражены слабее, чем в предыдущем случае.
Струи газообразных продуктов вулканизма могут отлагать значительные количества минерального вещества и при подводных извержениях.
Вэтих условиях смешение газов с морской водой приводит к пневматолитогидротермальному образованию конических сульфидных построек (черных курильщиков), содержащих заметные концентрации железа, цинка, меди и серебра.
№21 Распространённость минералов разных классов в литосфере
К оксидам относятся минералы, представляющие собой соединения металлов и металлоидов с кислородом; гидроксиды содержат группу (ОН)-, добавочные анионы и (или) воду. Оксиды насчитывают около 300 минеральных видов, гидроксиды - более 80. Они составляют 17% массы литосферы. Среди представителей этого класса такие широко распространенные минералы, как семейство кремнезема (кварц, опал и др.), на долю которого приходится около 12.6% от массы литосферы; оксиды и гидроксиды железа
(3.9%), алюминия.
Третьи вопросы
vk.com/club152685050 | vk.com/id446425943
№1 Самородные элементы
Самородные элементы, химические элементы, встречающиеся в природе в виде более или менее устойчивых минералов. Среди С. э. различают: неметаллы (полиморфные модификации углерода — алмаз и графит, самородные S, Se, Te), полуметаллы
(самородные As, Sb) и металлы (самородные Au, Ag, Сu, Pt, Pd, lr, Fe, Ta, Pb, Zn, Sn, Hg, Bi). Обычно вместе с самородными металлами рассматриваются тесно связанные с ними (минералогически и генетически) их твёрдые растворы, а иногда и интерметаллические соединения. Например, минералы группы платины наряду с редкой собственно платиной включают ферроплатину, поликсен и др. (см. Платина самородная). В самородном состоянии в природных условиях существует также ряд газов: азот, кислород, водород, аргон, гелий, криптон, ксенон, радон.
Большинство С. э. встречается редко и лишь в особых условиях образует крупные скопления (месторождения). Важное промышленное значение из металлов имеют золото самородное и элементы группы платины, меньшее — медь самородная, входящая в состав руд некоторых типов месторождений, ещё меньшее — серебро самородное; из неметаллов большое значение имеют алмаз, графит, сера. В лунных породах и метеоритах распространены самородное железо и железо-никель, редко встречающиеся в земной коре.
Для некоторых минералов класса С. э. типичны полиморфные модификации (см. Полиморфизм). С. э., как и все минералы, характеризуются наличием примесей и разнообразием форм проявления, отражающими условия образования С. э. в природе. Происхождение С. э. определяется магматическими, гидротермальными, метаморфическими и гипергенными процессами; многие С. э. встречаются в россыпях.
№2 Фосфаты и вольфраматы
К классу о́кислы относят минералы, представляющие собой соединения металла с кислородом.
ВОЛЬФРАМАТЫ, соли вольфрамовых к-т. Различают нормальные вольфраматы (простые вольфраматы, моновольфраматы), содержащие анион WO42. ольфраматы M2WO4 плавятся в интервале 600-1000 °С без разложения, моновольфраматы щелочных металлов, Mg и Т1(1) хорошо раствольфраматы в воде (моновольфраматы остальных металлов - плохо); выделяются из р-ров в виде кристаллогидратовольфраматы Получают моновольфраматы взаимод. р-ров солей металлов с р-рами вольфраматы щелочных металлов или нагреванием стехиометрич. кол-в оксида металла с WO3 при 600800 °С. Моновольфраматы встречаются в природе в виде минералов шеелита CaWO4, вольфрамита (Fe, Mn)WO4 и др.
Вольфрамит, - минерал состава (Fe, Mn) [WO4]
Шеелит (назв. по фамилии шведского химика Карла Шееле, первооткрывателя именно в шеелите вольфрамовой кислоты) - минерал состава Ca[WO4]. Может
Фосфорная кислота имеет химическую формулу Н3РО4. Соли фосфорной кислоты называются фосфатами. Простейшими из них являются фосфат калия — К3Р04, трехкальциевый фосфат — Са3 (РО4)2, фосфат алюминия АlРО4, фосфат окиси железа — FеРО4. К ним относятся также апатит, фосфаты фосфоритов и вивианит.
Содержание фосфора в фосфатах выражают в процентах, обычно пересчитанных на фосфорный ангидрид — Р2O5. Этот ангидрид нередко называют фосфорной кислотой, хотя это и неправильно. Так, например, когда говорят, что в фосфорите содержится 30 % фосфорной кислоты, это не значит, что в нём заключена жидкая фосфорная кислота, а подразумевается, что находящийся в нём фосфор условно выражен в форме Р2O5, содержание которого равно 30%.
vk.com/club152685050 | vk.com/id446425943
Минералы, как и всякие другие химические соединения, характеризуются определенным химическим составом и определенными физическими свойствами. Горные породы — это закономерные природные сочетания определенных минералов. Некоторые горные породы состоят из кристалликов одного минерала — например, кварцит из кварца, каолин из каолинита, мрамор из кальцита.
Апатит и вивианит — это минералы, а фосфорит - горная порода, состоящая из микрозернистого или аморфного фосфата кальция с примесью других веществ. Апатитовая и вивианитовая горные породы также являются природными минеральными сочетаниями, но с преобладанием апатита или вивианита.
В природе известно свыше 120 фосфатных минералов, но лишь несколько десятков из них встречаются часто или относительно часто.
Апатит
Бирюза
№3 Сульфиды меди, железа, никеля, молибдена
Сульфиды — природные сернистые соединения металлов и некоторых неметаллов. В химическом отношении рассматриваются как соли сероводородной кислоты H2S. Ряд элементов образует с серой полисульфиды, являющиеся солями полисернистой кислоты H2Sх. Главнейшие элементы образующие сульфиды — Fe, Zn, Cu, Mo, Ag, Hg, Pb, Bi, Ni, Co, Mn, V, Ga, Ge, As, Sb.
Свойства Кристаллическая структура сульфидов обусловлена плотнейшей кубической и
гексагональной упаковкой ионов S, между которыми располагаются ионы металлов. основные структуры представлены кординационными (галенит, сфалерит), островными (пирит), цепочечными (антимонит) и слоистыми (молибденит) типами.
Характерны следующие общие физические свойства: металлический блеск, высокая и средняя отражающая способность, сравнительно низкая твёрдость и большой удельный вес.
Происхождение (генезис)
Широко распространены в природе, составляя около 0,15 % от массы земной коры. Происхождение преимущественно гидротермальное, некоторые сульфиды образуются и при экзогенных процессах в условиях восстановительной среды. Являются рудами многих металлов — Cu, Ag, Hg, Zn, Pb, Sb, Co, Ni и др. К классу сульфидов относят близкие к ним по свойствам антимониды, арсениды, селениды и теллуриды.
Меди сульфиды,
соединения меди с серой, Cu2S и CuS. Из них Cu2S встречается в виде минерала халькозина.
Железа сульфиды,
соединения железа с серой: FeS, FeS2 и др. Природные Ж. с. (пирит и марказит FeS2, пирротин Fe7S8) широко распространены в земной коре.
Сульфиды никеля
Соединения никеля с серой NiS. Петландит. Сульфиды Молибдена: Молебденит MoS2.
№4 Сульфиды свинца, цинка, висмута, сурьмы, мышьяка, ртути
Сульфид свинца: галенит. Сульфид цинка: сфалерит. Сульфид висмута: висмутин. Сульфид сурьмы: антимонит.
Сульфиды мышьяка: реальгар, арсенопирит, кобальтин.
vk.com/club152685050 | vk.com/id446425943
Сульфид ртути: киноварь.
№5 Островные силикаты с добавочными анионами (без диортосиликатов)
Силикаты природные (от лат. silex — кремень), класс наиболее распространённых минералов; природные химические соединения с комплексным кремнекислородным радикалом. С. слагают более 75% земной коры (а вместе с кварцем около 87%) и более 95% изверженных горных пород. С. включают около 500 минеральных видов, в том числе важнейшие породообразующие — полевые шпаты, пироксены, амфиболы, слюды и др.
Островные силикаты, т.е. силикаты с изолированными тетраэдрами [SiO4]4- и изолированными группами тетраэдров: а) силикаты с изолированными кремнекислородными тетраэдрами (См. схему, а). Их радикал [SiO4]4-, т.к. каждый их четырёх кислородов имеет одну валентность. Между собой эти тетраэдры непосредственно не связаны, связь происходит через катионы; б) Островные силикаты с добавочными анионами О2-, ОН1-, F1- и др. в) Силикаты со сдвоенными тетраэдрами. Отличаются обособленными парами кремнекислородных тетраэдров [Si2O7]6-. Один из атомов кислорода у них общий (см. Схему, б), остальные связаны с катионами. г) Кольцевые силикаты. Характеризуются обособлением трёх, четырёх или шести групп кремнекислородных тетраэдров, образующих кроме простых колец (см. Схему в,г), также и "двухэтажные". Радикалы их [Si3O9]6-, [Si4O12]8-, [Si6O18]2-, [Si12O30]18-.
Представители: оливины, гранаты, циркон, титанит, топаз, дистен, андалузит, ставролит, везувиан, каламин, эпидот,цоизит, ортит, родонит, берилл, кордиерит, турмалин и др.
Во всех подклассах С. выделяются группы с добавочными анионами (O2-, F-, CI-, OH-,S2-)
(Al2[SiO4](F, OH)2) топаз.
№6 Дисульфиды, арсениды
Кроме того, распространены простые соединения типа А[Х2] — дисульфиды, которые В. И. Вернадский относит к производным H2S2. Сравнивая с окислами, он считает их аналогами перекисей (персульфидами). Действительно, дисульфиды при нагревании легко отдают часть серы, подобно перекисям, теряющим часть кислорода.
Арсениды и антимониды (простые соединения металлов с мышьяком и сурьмой) существенно отличаются по химической природе от сернистых соединений. Ни мышьяк, ни сурьма не могут являться изоморфными заместителями серы, как это принималось в старое время. К таким соединениям относятся, например, NiAs, NiSb, Fe[As2], Co4[As4]3 и др. К персульфидам и диарсенидам очень близки по химическим и физическим свойствам также сульфоарсениды (Fe[AsS] и др.) и сульфоантимониты (Ni[SbS] и др.).
Многие соединения из рассматриваемого класса образуют друг с другом твердые растворы в виде непрерывных рядов или с ограниченной смесимостью в твердом состоянии. К ним, например, можно отнести ряды: HgS — HgSe, Co[As2] — Ni[As2] — Fe[As2] и многие другие. Наконец, широко распространены полиморфные и политипные модификации.
Многие соединения из рассматриваемого класса образуют друг с другом твердые растворы в виде непрерывных рядов или с ограниченной смесимостью в твердом состоянии. К ним, например, можно отнести ряды: HgS — HgSe, Co[As2] — Ni[As2] — Fe[As2] и многие другие.
№7 Островные силикаты без добавочных анионов
Островные силикаты, т.е. силикаты с изолированными тетраэдрами [SiO4]4- и изолированными группами тетраэдров: а) силикаты с изолированными кремнекислородными тетраэдрами (См. схему, а). Их радикал [SiO4]4-, т.к. каждый их
