
- •Электричество и постоянный ток Электронный учебник по физике кгту-кхти. Кафедра физики. Старостина и.А., Кондратьева о.И., Бурдова е.В.
- •Электричество и постоянный ток
- •1. Электростатика.
- •1.1. Электрические заряды. Закон сохранения электрического заряда.
- •1.2. Закон Кулона.
- •1. 3. Электростатическое поле и его напряженность.
- •1.4. Графическое изображение электростатических полей
- •1. 5. Принцип суперпозиции электростатических полей.
- •1.6. Электростатическое поле электрического диполя.
- •1.7. Поток вектора напряженности электростатического поля
- •1. 8. Теорема Гаусса для электростатического поля в вакууме.
- •1. 9. Применение теоремы Гаусса для расчета напряженности электростатического поля.
- •Поле двух бесконечных разноименно заряженных плоскостей.
- •1 Рис.1.12. К определению работы перемещения заряда в электростатическом поле. .10. Работа сил электростатического поля при перемещении заряда.
- •1.11. Циркуляция вектора напряженности электростатического поля.
- •1.12. Потенциальная энергия и потенциал электростатического поля.
- •1.13. Связь между потенциалом и напряженностью электростатического поля. Эквипотенциальные поверхности.
- •1.14. Вычисление разности потенциалов по напряженности поля
- •1.15. Диэлектрики в электрическом поле
- •1.15.1. Типы диэлектриков. Поляризация диэлектриков.
- •1.15.2. Вектор поляризации и диэлектрическая восприимчивость диэлектриков
- •1.15.3. Напряженность поля в диэлектрике
- •1.15.4. Электрическое смещение. Теорема Гаусса для электростатического поля в диэлектрике
- •1.15.5. Сегнетоэлектрики
- •1.15.6. Пьезоэлектрический эффект.
- •1. 16. Проводники в электростатическом поле
- •1. 17. Электрическая емкость уединенного проводника
- •1. 18. Взаимная электроемкость. Конденсаторы
- •1. 19. Энергия заряженного уединенного проводника, конденсатора. Энергия электростатического поля
- •2. Постоянный электрический ток
- •2.1. Электрический ток, сила и плотность тока
- •2.2. Сторонние силы. Электродвижущая сила и напряжение
- •2.3. Закон Ома для участка и полной замкнутой цепи
- •2.4. Сопротивление проводника. Явление сверхпроводимости.
- •2.5. Работа и мощность тока. Закон Джоуля-Ленца.
- •2. 6. Правила Кирхгофа для разветвленных цепей.
- •3. Электрические токи в металлах, вакууме и полупроводниках
- •3.1. Опытные доказательства электронной проводимости металлов.
- •3.2. Основные положения классической теории электропроводности металлов
- •3. 3. Работа выхода электрона из металла. Контактная разность потенциалов.
- •3. 4. Термоэлектрические явления
- •3. 5. Электрический ток в вакуумном диоде
- •3. 6. Собственная и примесная проводимость полупроводников.
- •3.7. Элементы современной квантовой или зонной теории твердых тел.
1. 8. Теорема Гаусса для электростатического поля в вакууме.
Рис.1.7.
К выводу теоремы Гаусса.
Рассмотрим сначала случай сферической поверхности радиусом R, окружающей один заряд +q, находящийся в ее центре (рис.1.7).
,
где
-
есть интеграл по замкнутой поверхности
сферы. Во всех точках сферы модуль
вектора
одинаков, а сам он направлен перпендикулярно
поверхности. Следовательно
.
Площадь поверхности сферы равна
.
Отсюда следует, что
.
П
Рис.1.8. Пересечение
силовыми линиями поверхности, охватывающей
заряд (показано в сечении).
На рисунке 1.8 представлена произвольная замкнутая поверхность, охватывающая заряд q0. Некоторые линии напряженности то выходят из поверхности, то входят в нее. Для всех линий напряженности число пересечений с поверхностью является нечетным.
Как отмечалось в предыдущем параграфе, линии напряженности, выходящие из объема, ограниченного замкнутой поверхностью, создают положительный поток Фе; линии же, входящие в объем, создают отрицательный поток -Фе. Потоки линий при входе и выходе компенсируются. Таким образом, при расчете суммарного потока через всю поверхность следует учитывать лишь одно (не скомпенсированное) пересечение замкнутой поверхности каждой линией напряженности.
Если заряд q не охватывается замкнутой поверхностью S, то количество силовых линий, входящих в данную поверхность и выходящих из нее, одинаково (рис.1.9). Суммарный поток вектора через такую поверхность равен нулю: ФЕ=0.
Р
Рис.1.9. Пересечение
силовыми линиями поверхности, не
охватывающей заряд (показано в сечении).
.
Проекция вектора
- результирующей напряженности поля
на направление нормали к площадке
dS
равна алгебраической сумме проекций
всех векторов
на это направление:
,
отсюда
.
Поток вектора напряженности электростатического поля в вакууме сквозь произвольную замкнутую поверхность равен алгебраической сумме зарядов, охватываемых этой поверхностью, деленной на электрическую постоянную 0. Эта формулировка представляет собой теорему К.Гаусса.
В
общем случае электрические заряды могут
быть распределены с некоторой объемной
плотностью
,
различной в разных местах пространства.
Тогда суммарный заряд объема V,
охватываемого замкнутой поверхностью
S
равен
и теорему Гаусса следует записать в
виде
.
Теорема Гаусса представляет значительный практический интерес: с ее помощью можно определить напряженности полей, создаваемых заряженными телами различной формы.