
- •1. Цель и задачи дисциплины. Понятие социального процесса (масштаб, направленность, интенсивность, состав, характер стимуляции).
- •2. Основные элементы социального процесса (участники, субъект процесса, причины, наблюдатель). Социальные системы. Динамика социального процесса.
- •3.Понятие cоциально-экономических и политических процессов. Классификация. Политическая система общества.
- •4.Свойства социально-экономических и политических процессов.
- •5.Институциональный и системный подходы к исследованию социальных процессов
- •6.Эволюционный и функциональный подходы к исследованию социальных процессов.
- •7. Индуктивный и дедуктивный способы научных представлений об обществе, социальных процессах.
- •8.Системный подход как методология научных исследований. Системность материального мира, мышления и практической деятельности.
- •9.Кибернетика н.Винера. Тектология Богданова. Общая теория систем л.Фон Берталанфи.
- •10.Понятие абстрактной системы. Базовые свойства системы. Подсистема и надсистема.
- •11.Понятие модели системы. Сложная система.
- •12.Понятие структуры системы. Виды структур систем (страты, слои, эшелоны). Примеры.
- •13.Понятие процесса и его состояния.
- •14.Понятие динамической системы. Фазовое пространство. Модель «черного ящика».
- •15.Понятие и свойства внешней среды. Открытая и закрытая системы.
- •16.Общесистемное понятие цели, задачи, дерево цели. Трудности в формировании цели.
- •17. Понятие и классификация систем по субстанциональному (основному) признаку.
- •18. Классификация систем по уровню автоматизации. Естественные системы.
- •19. Классификация систем по целевому назначению.
- •20. Классификация смешанных систем.
- •21. Классификация динамических систем по способу описания, по основным свойствам.
- •22. Классификация систем по виду структур.
- •23. Классификация социальных систем.
- •24. Закон системности. Законы преобразования композиции систем.
- •25. Закон полиморфизации. Полиморфизм и изоморфизм систем. Гомогенные и гетерогенные системы.
- •26. Принцип декомпозиции и композиции систем.
- •27. Принцип адекватности систем.
- •28. Принцип управляемости и наблюдаемости. Принцип единства системы и среды.
- •30. Принципы реализуемости, типизации и стандартизации.
- •31. Принцип контринтуитивного проектирования, оперативного принятия решения и самоорганизации.
- •32. Принцип ситуационного управления.
- •33. Определение модели. Назначение модели.
- •34. Задачи моделирования. Достоинства и недостатки метода моделирования.
- •35. Классификация моделей: по способу использования, по отражению режимов работы.
- •36. Классификация моделей по способу создания.
- •37. Классификация моделей: по виду деятельности человека, по способу математического описания.
- •38. Свойства моделей и требования к ним.
- •39. Понятие экспертной системы. Назначение, структура.
- •40. Основные режимы работы эс. Этапы разработки эс.
- •41. Системы массового обслуживания. Структура и характеристики.
- •42. Условие работоспособности системы. Показатели эффективности функционирования смо.
- •43. Классификация систем массового обслуживания. Примеры.
- •44. Планирование развития и функционирования сложных систем. Основные понятия.
- •45. Процедура планирования сложных систем.
- •46. Виды планирования сложных систем.
- •47. Методы экспертных оценок.
- •48. Мeтoды кoллeктивнoй paбoты экcпepтнoй гpyппы.
- •49. Мeтoды пoлyчeния индивидyaльнoгo мнeния члeнoв экcпepтнoй гpyппы.
- •50. Предпосылки к применению когнитивного подхода к анализу сложных ситуаций (пример когнитивной карты).
- •51. Понятие и составление когнитивной карты сложной ситуации (пример когнитивной карты).
- •52. Этапы построения когнитивной карты. Анализ устойчивости знакового графа.
40. Основные режимы работы эс. Этапы разработки эс.
Экспертная система работает в двух режимах: приобретения знаний и решения задач (называемых также режимом консультации или режимом использования ЭС). В режиме приобретения знаний общение с ЭС осуществляется через инженера по знаниям (эксперта). Эксперт описывает проблемную область в виде совокупности данных и правил. Данные определяют объекты, их характеристики и значения, существующие в области экспертизы. Правила определяют способы манипулирования данными, характерные для рассматриваемой проблемной области. Эксперт, используя компонент приобретения знаний, наполняет систему знаниями, которые позволяют ЭС в режиме решения самостоятельно решать задачи из проблемно области. В режиме консультации общение с ЭС осуществляет конечный пользователь, которого интересует результат и (или) способ получения решения. В режиме консультации данные о задаче пользователя обрабатываются диалоговым компонентом, который выполняет следующие действия: распределяет роли участников (пользователя и ЭС) и организует их взаимодействие в процессе кооперативного решения задачи; преобразует данные пользователя о задаче, представленные на привычном для пользователя языке, во внутренний язык системы; преобразует сообщения системы, представленные во внутреннем языке, в сообщения на языке, привычном для пользователя. После обработки данные поступают в рабочую область. На основе входных данных из рабочей области, общих данных о проблемной области и правил из базы знаний решатель (интерпретатор) формирует решения задачи.
В ходе работ по созданию ЭС сложилась определенная технология их разработки, включающая шесть следующих этапов: На этапе идентификации определяются задачи, которые подлежат решению, выявляются цели разработки, определяются эксперты и типы пользователей. На этапе концептуализации проводится содержательный анализ проблемной области, выявляются используемые понятия и их взаимосвязи, определяются методы решения задач. На этапе формализации выбираются ИС и определяются способы представления всех видов знаний, формализуются основные понятия, определяются способы интерпретации знаний, моделируется работа системы, оценивается адекватность целям системы зафиксированных понятий, методов решений, средств представления и манипулирования знаниями. На этапе выполнения осуществляется наполнение экспертом базы знаний. В связи с тем, что основой ЭС являются знания, данный этап является наиболее важным и наиболее трудоемким этапом разработки ЭС. Процесс приобретения знаний разделяют на извлечение знаний из эксперта, организацию знаний, обеспечивающую эффективную работу системы, и представление знаний в виде, понятном ЭС. Процесс приобретения знаний осуществляется инженером по знаниям на основе анализа деятельности эксперта по решению реальных задач.
41. Системы массового обслуживания. Структура и характеристики.
Система массового обслуживания (СМО) - система, в которой с одной стороны возникают массовые запросы на выполнение каких-либо услуг, а с другой происходит удовлетворение этих запросов. Обслуживание требований в СМО производится обслуживающими приборами. Классическая СМО содержит от одного до бесконечного числа приборов. В зависимости от наличия возможности ожидания поступающими требованиями начала обслуживания СМО подразделяются на:-системы с потерями, в которых требования, не нашедшие в момент поступления ни одного свободного прибора, теряются;-системы с ожиданием, в которых имеется накопитель бесконечной ёмкости для буферизации поступивших требований, при этом ожидающие требования образуют очередь;-системы с накопителем конечной ёмкости (ожиданием и ограничениями), в которых длина очереди не может превышать ёмкости накопителя; при этом требование, поступающее в переполненную СМО (отсутствуют свободные места для ожидания), теряется.
Структура СМО: входящий поток требований (последовательность заявок, поступающих на пункт обслуживания), → очередь (множество заявок, ожидающих обслуживания), →каналы обслуживания (совокупность устройств, выполняющих операции по обслуживанию заявок), →выходящий поток требований (поток заявок, покидающих обслуживающую систему).
В зависимости от типа СМО при оценке ее эффективности могут применяться те или другие величины (показатели эффективности). Например, для СМО с отказами одной из важнейших характеристик ее продуктивности является так называемая абсолютная пропускная способность — среднее число заявок, которое может обслужить система за единицу времени, относительная пропускная способность СМО — средняя доля поступивших заявок, обслуживаемая системой (отношение среднего числа заявок, обслуживаемых системой в единицу времени, к среднему числу поступающих за это время заявок).Кроме того, в зависимости от задачи исследования, могут интересовать и другие характеристики, например:- среднее число занятых каналов;- среднее относительное время простоя системы в целом и отдельного канала и т. д.
СМО с ожиданием весьма важными характеристиками являются:- среднее число заявок в очереди;- среднее число заявок в системе (в очереди и под обслуживанием);- среднее время ожидания заявки в очереди;- среднее время пребывания заявки в системе (в очереди и под обслуживанием);и другие характеристики ожидания.
Для СМО с ограниченным ожиданием интерес представляют обе группы характеристик: как абсолютная и относительная пропускная способности, так и характеристики ожидания..