Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Glava_1 (2).doc
Скачиваний:
10
Добавлен:
15.08.2019
Размер:
322.56 Кб
Скачать

1.4. Понятие об адекватности математической модели

Пусть математическая модель задана в виде уравнения статики:

(1.12)

Имеется объект (оригинал), на вход которого можно подать некоторое возмущение, установив новое значение вектора входных координат . Используя эти значения в уравнении (1.12), можно найти расчетные значения вектора выходных координат . Сравнивая этот вектор с соответствующими значениями, полученными в ходе эксперимента на объекте (оригинале), можно сделать вывод о степени близости модели к оригиналу (рис.1.5).

Определение 1

Известны вектор параметров и решение уравнения (1.12) Математическая модель (1.12) адекватна объекту по Y, если для произвольного входного воздействия величина расстояния между и вектором , полученном на объекте при , меньше заданного числа , т.е.

.

где  – функция невязки, определяет формулу для расчета расстояния;  – допустимая ошибка, характеризует степень адекватности модели.

Рис.1.5. Определение адекватности модели объекта

Адекватность модели зависит от степени полноты и достоверности сведений об исследуемом объекте, степени детализации модели, точности идентификации параметров модели, уровня подготовки и опыта исследователя.

1.5. Общая характеристика методов составления математических моделей

Анализ любого метода разработки математической модели позволяет выделить три необходимых этапа в решении этой задачи:

определение структуры функции связи f входных X и выходных Y координат объекта (формирование в общем виде уравнения математической модели);

определение параметров модели (коэффициентов уравнения математической модели ) B. Задача идентификации вектора параметров В;

проверка адекватности математической модели.

В зависимости от способов решения задач первого и второго этапов различают три группы методов составления математических моделей: формальные (экспериментально-статистические методы), неформальные (аналитические методы) и комбинированные методы.

Формальные (экспериментально-статистические) методы применяются для построения математических моделей стационарных и нестационарных объектов, только с сосредоточенными координатами. Главными особенностями этих методов являются:

одинаковые с точностью до В формальные математические модели могут описывать разные БТС;

не требуется глубокое изучение особенностей моделируемого объекта;

точность математической модели достигается путем повышения размерности вектора параметров (коэффициентов) В.

В основе формальных методов построения математических моделей лежит кибернетическое представление об объекте моделирования, как о некотором черном ящике (рис.1.6).

Рис.1.6. Блок - схема объекта моделирования

В рамках данного понятия предполагается, что:

  • внутренняя структура объекта неизвестна,

  • доступны для наблюдения все входы (X) и выходы (Y) объекта,

  • на вход объекта можно подавать различные возмущения,

  • на основе наблюдений за X и Y можно составить уравнения связи, которые в дальнейшем будут рассматриваться как уравнения математической модели объекта.

Одним из главных достоинств этой группы методов является их универсальность и полная инвариантность к исследуемой предметной области. Их использование предполагает наличие у разработчика значительного объема экспериментальных данных: результатов наблюдений (Х и Y) за объектом. Очевидно, экспериментально-статистические методы нельзя применять для построения новых объектов, объектов, находящихся в стадии проектирования, не существующих в реальности.

Особенности неформальных (аналитических) методов составления математических моделей включают факты:

- функцию связи f входных X и выходных Y координат выводят на основе анализа элементарных физико-химических процессов, протекающих в объекте моделирования;

- в составляющие вектора В параметров модели (коэффициенты уравнений) входят основные конструктивные и технологические характеристики моделируемого объекта;

- полученные на основе этих методов математические модели, как правило, являются нелинейными.

Основным достоинством аналитических методов построения моделей является возможность детального (полного) анализа характеристик объекта в широком диапазоне изменения исходных данных. Однако аналитический подход к разработке математических моделей возможен только при рассмотрении сравнительно простых объектов, в других случаях он требует значительных упрощений (допущений) описаний реальных процессов, что приводит к снижению точности моделирования. Аналитические методы разработки математических моделей не требуют постановки экспериментов и могут применяться при проведении предпроектных исследований, а также при проектировании нового объекта.

Комбинированные методы представляют собой интеграцию аналитического и формально-статистического подходов к разработке математических моделей. Например, формирование в общем виде уравнений математической модели осуществляется на основе универсальных законов сохранения (аналитический подход), а определение параметров модели выполняется экспериментально-статистическими методами. При таком подходе ослабляется главный недостаток формальных методов построения моделей: отсутствие в структуре уравнений отображения элементарных физико-химических процессов, протекающих в исследуемом объекте.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]