Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лелевкина Л.Г. и др. Пределы последовательносте...doc
Скачиваний:
12
Добавлен:
14.08.2019
Размер:
2.18 Mб
Скачать

§2. Понятие неопределенностей

В практике отыскания пределов наиболее часто применяются свойства 2 - 6 об арифметических действиях над пределами. Однако их непосредственное применение бывает невозможно в особых случаях, называемых неопределенностями, которые возникают при нарушении их условий. Виды неопределенностей , , , .

Кроме этих неопределенностей, связанных с арифметическими действиями над пределами, существуют неопределенности , , .

Чтобы найти пределы при наличии неопределенности, надо эту неопределенность устранить, открыв тем самым возможность использования того или иного свойства пределов. Это достигается, с одной стороны, применением алгебраических и тригонометрических преобразований (разложение функции на множители или на слагаемые, приведение дробей к общему знаменателю, добавление и вычитание некоторого выражения, умножение и деление на некоторую функцию, вынесение множителя за скобку и т.п.) заменой переменной, использованием эквивалентных бесконечно малых и бесконечно больших, а с другой стороны, использование так называемых замечательных пределов.

Таблица раскрытия различных видов неопределенностей

Тип неопределенности

Правило раскрытия

1.

1.1. Чтобы раскрыть неопределенность вида , заданную отношением двух многочленов, надо и числитель и знаменатель почленно разделить на переменную величину в наибольшей степени.

1.2. Для раскрытия неопределенности вида , заданную отношением иррациональных функций, надо и числитель и знаменатель почленно разделить на переменную величину в наибольшей степени с учетом степеней корней.

2.

2.1. Для того, чтобы определить предел дробно-рациональной функции в случае, когда при числитель и знаменатель дроби имеют пределы, равные нулю, надо числитель и знаменатель дроби разделить на и перейти к пределу. Если и после этого числитель и знаменатель новой дроби имеют пределы, равные нулю при , то надо произвести повторное деление на .

2.2. Чтобы раскрыть неопределенность вида ,

в которой числитель или знаменатель иррациональны, следует надлежащим образом избавиться от иррациональности, умножив и числитель и знаменатель дроби на одно и то же выражение, приводящее к формулам сокращенного умножения. Неопределенность устраняется после сокращения дроби.

В случае квадратных корней и числитель и знаменатель дроби умножаются на сопряженное выражение тому, которое содержит иррациональность и применяется формула .

В случае кубических корней и числитель и знаменатель дроби умножаются на неполный квадрат суммы или разности и применяется формула .

3.

3.1. Неопределенность вида ,

получающаяся в результате алгебраической суммы иррациональных выражений, устраняется или приводится к типу 1 путем домножения и деления на одно и то же выражение, приводящее к формулам сокращенного умножения.

В случае квадратных корней разность домножается на сопряженное выражение и применяется формула .

В случае кубических корней функция домножается на неполный квадрат суммы или разности и применяется формула .

3.2. Неопределенность вида ,

получающаяся в результате алгебраической суммы двух дробей, устраняется или сводится к типу 2 путем приведения дробей к общему знаменателю.

Пусть , .

Тогда

4. Замечатель-ные

пределы

4.1. Первый замечательный предел

(неопределенность  ).

В случае, когда под знаком предела стоят тригонометрические функции, дающие неопределенность , используется первый замечательный предел:

.

Его различные формы: ,

, ,

, ,

, .

4.2. Второй замечательный предел

(неопределенность  ):

.

Его различные формы: ,

,

,

,

.

5.

5.1. Неопределенность типа

сводится либо к неопределенности типа 1 , либо к неопределенности типа 2 путем перемещения в знаменатель одного из сомножителей. Пусть , .

Тогда

6. ,

6.1. Неопределенности вида ,

сводятся к неопределенности типа 5 путем логарифмирования.

Замечание.

Применение замечательных пределов требует понимания и запоминания структуры каждого из них и при необходимости ее воспроизведения. Так, для предела характерно отношение синуса бесконечно малого угла к самому углу. Поэтому всякий предел вида равен 1, если . Например, каждый из пределов , , есть, в сущности, первый замечательный предел и потому равен 1, чего нельзя сказать ни об одном из пределов , , .

Для предела (е - иррациональное число е=2,7182818…) характерно, что сумма, равная единице плюс бесконечно малая, возводится в степень, обратную этой бесконечно малой. Следовательно, если , то и . Такова структура каждого из пределов , , , и поэтому все они равны e, но структура пределов , , отлична от структуры второго замечательного предела.

Подобные рассуждения справедливы и для других форм замечательных пределов.