
- •1. Единство естественнонаучного и гуманитарного компонентов культуры личности
- •2. Исходная характеристика научного знания. Обобщенность научного знания.
- •3. Идеальная модель как одна из форм задания объекта в теоретическом естествознании. Развитие модельных представлений об атоме
- •4. Идеализация как одна из форм задания объекта в теоретическом естествознании.
- •(Уравнение Ван-дер-Ваальса).
- •5. Проблема обоснования границ научного знания. Сущность и условия применения процедуры обоснования внутри естествознания. Основные вненаучные способы обоснования принимаемых решений.
- •6. Доказанность научного знания
- •7. Методологические регулятивы научного познания
- •8. Понятие метода, методологии и методики
- •9. Наблюдение и специфика его применения в современном естествознании
- •10. Метод эксперимента в современном естествознании
- •11. Гипотеза как форма развития естествознания
- •14. Интеграция фундаментальных и прикладных исследований
- •13. Преемственность в развитии научных теорий
- •12. Математизация естествознания
- •15. Единство эволюционного и революционного путей развития естествознания. Понятие парадигмы. Критический анализ концепции т.Куна
- •19. Принцип абсолютности свойств. Количественная относительность свойств. Принцип дополнительности
- •21. Дальнодействие, близкодейтвие. Концепция силового поля как посредника при передаче взаимодействия. Квантованное поле. Понятие физического вакуума.
- •22. Гравитационное взаимодействие
- •23. Электромагнитное взаимодействие
- •(Закон Кулона)
- •24. Сильное взаимодействие
- •25. Слабое взаимодействие
- •26. Структурная физика. Корпускулярный подход к описанию и объяснению природы. Редукционизм
- •27. Динамические и статистические закономерности в природе. Классическая и квантовая статистика. Лапласовский детерминизм. Фазовые пространства, цель их ввода в физическое познание.
- •28. Понятие состояния в классической и квантовой физике
- •29. Роль законов сохранения в развитии физического знания. Законы сохранения и принципы симметрии. Правила отбора физики элементарных частиц
- •32. Химические системы
- •50. Рациональность. Суть научной рациональности.
- •51. Классический тип научной рациональности
- •45. Антропный принцип
- •Оглавление
- •Введение
- •Становление космологии
- •1.1. Древняя космология
- •1.2. Начало научной космологии. Формирование классической космологической модели.
- •2. Космологические парадоксы
- •2.1. Фотометрический парадокс
- •2.2. Гравитационный парадокс
- •2.3. Термодинамический парадокс
- •2.4. Неевклидовы геометрии
- •Особенности современной космологии
- •3.1 Космологические данные
- •3.2 Релятивистская модель Вселенной
- •3.3 Модель расширяющейся Вселенной
- •4 Эволюция Вселенной
- •4.1 Большой взрыв: Инфляционная модель
- •4.2 Ранний этап эволюции Вселенной
- •5 Острова Вселенной
- •5.1 Многообразие форм звёздных систем
- •5.2 Группы и скопления галактик
- •5.3 Эволюция галактик
- •5.4 Радиоизлучение и активность галактик
- •5.5 Галактика Млечный путь
- •5.6 Метагалактика
- •6 Звезды и их эволюция.
- •6.1 Классификация звезд
- •6.2 Эволюция звезд
- •6.3 Солнце - самая дорогая нам звезда
- •7. Солнечная система
- •7.1 Зарождение
- •7.2 Строение Солнечной системы
- •7.3 Кометы
- •7.4 Планета Земля
- •7.5. Геодинамические процессы
- •8. Антропный принцип и эволюция
- •Проблема поиска жизни во Вселенной
- •Содержание
- •Введение
- •1 Учение о составе вещества
- •1.1 Химический элемент
- •2.2 Химическое соединение
- •2.3 Химические связи
- •3 Химические процессы
- •1.Реакция соединения.
- •2.Реакция разложения
- •3.Реакция замещения
- •4. Реакция обмена
- •4 Структурная химия
- •5 Эволюционные проблемы в химии.
- •7 Контрольные вопросы
- •8 Тестовые задания
- •10 Рекомендуемая литература
- •1 Варианты контрольных работ
- •4.2 Какой из ниже приведенных процессов, не относится к однофакторному эксперименту:
- •4.2 К какому взаимодействию относится изотопическая инвариантность?
- •4.3 Основная задача механики состоит в том, чтобы:
- •4.2 Основное (истинное) стационарное состояние атома, это состояние:
- •4.3 Полное описание механического движения в механике Галилея-Ньютона задается:
- •4.2 Идеальная модель атома Бора, постулирует:
- •4.3 Выберите правильное высказывание:
- •2 Распределение вариантов контрольных работ по номерам зачетных книжек и учебным годам
- •3 Контрольные вопросы к зачету и экзамену
- •Список использованных источников
- •Возникновение живой материи и особенности ее организации
- •1.1 Возникновение живой материи
- •Свойства жизни
- •3. Уровни организации жизни
- •3.1 Молекулярно-генетический уровень.
- •3.2 Клеточный уровень
- •3.2.1 Химическая организация клеток
- •Линейная днк
23. Электромагнитное взаимодействие
Электромагнитное взаимодействие - это тип физического взаимодействия, характеризуемый участием электромагнитного поля. Электромагнитное поле либо излучается, либо поглощается при взаимодействии, либо переносит взаимодействие между телами.
Так, кулоновское притяжение между двумя неподвижными телами, обладающими разноименными электрическими зарядами, осуществляется посредством электрического поля, создаваемого этими зарядами. Если расстояние между телами значительно превышает их размеры, то сила притяжения
(Закон Кулона)
Такая зависимость от расстояния отражает дальнодействующий характер электромагнитного взаимодействия, его неограниченный радиус действия (как и у гравитационного взаимодействия).
В отличие от гравитационного взаимодействия, при котором тела всегда притягиваются, электромагнитное взаимодействие может приводить как к притяжению, так и к отталкиванию между телами. Это отражает существование двух разноименных электрических зарядов: положительного и отрицательного. Разноименные заряды притягиваются, одноименные - отталкиваются. Свободные магнитные заряды в природе не обнаружены.
Электромагнитное взаимодействие ответственно за существование основных кирпичиков вещества - атомов и молекул. Оно определяет взаимодействие положительно заряженных ядер и отрицательно заряженных электронов в этих микросистемах. Поэтому к электромагнитному взаимодействию сводится большинство сил, которые наблюдаются в макроскопических явлениях: силы упругости и трения, поверхностного натяжения в жидкостях и др.
Свойства различных агрегатных состояний вещества, химические превращения, электрические, магнитные и оптические явления определяются электромагнитным взаимодействием.
Электромагнитную природу имеет явление сверхпроводимости (сверхпроводимость - полное отсутствие сопротивления постоянному току у многих металлов и металлических сплавов при температурах, близких к абсолютному нулю). Электромагнитную природу имеет и явление сверхтекучести (сверхтекучесть - это свойство жидкого гелия протекать без трения сквозь тонкие капилляры и щели при температуре, ниже 2,17 К).
Электромагнитным взаимодействием обусловлены упругое и неупругое рассеяние электронов, позитронов и мюонов, процессы расщепления ядер фотонами и др.
Проявление электромагнитного взаимодействия широко используется в электротехнике, электронике, оптике, квантовой электронике.
Таким образом, электромагнитное взаимодействие обуславливает подавляющее большинство явлений окружающего нас мира.
Явления,
в которых участвуют слабые, медленно
меняющиеся электромагнитные поля,
управляются законами классической
электродинамики (слабость электромагнитного
поля означает, что его энергия <<mc2,
где mc2
энергия
покоя электрона, m
- масса электрона; медленное изменение
электромагнитного поля означает, что
<<,
где
-круговая частота изменения поля).
Для
сильных или быстроменяющихся полей (~
mc2,
~
)
определяющую
роль играют квантовые явления. Кванты
электромагнитного поля называются
фотонами или
-
квантами. Они характеризуют корпускулярные
свойства электромагнитного поля. Масса
покоя фотона равна нулю, его электрический
заряд тоже равен нулю, а скорость равна
скорости света.