
- •Учебное пособие для студентов технических университетов
- •1. Вводные сведения
- •1.1. Предсказание будущего - задача науки
- •1.2. Предмет физики
- •1.3. Физическая модель
- •1.4. Язык физики?
- •1.5. Экспериментальная и теоретическая физика
- •Физические основы механики
- •3.1.3. Абсолютно твердое тело
- •3.2. Тело отсчета
- •3.3. Система отсчета
- •3.4. Положение материальной точки в пространстве
- •3.10.1. Нормальное и тангенциальное ускорение
- •4. Динамика материальной точки
- •4.6.1. Система си (System international)
- •4.6.1.1. Размерность силы
- •5.3. Работа
- •5.6.1. Консервативность силы тяжести
- •5.6.2. Неконсервативность силы трения
- •5.7. Потенциальная энергия может быть введена только для поля консервативных сил
- •5.8.Закон сохранения механической энергии
- •6. Кинематика вращательного движения
- •6.1. Поступательное и вращательное движение
- •6.2. Псевдовектор бесконечно малого поворота
- •6.5. Связь линейной скорости материальной точки твердого тела и угловой скорости
- •8. Элементы специальной теории относительности
- •8.2. Принцип относительности Галилея:
- •8.3. Неудовлетворительность механики Ньютона при больших скоростях
- •8.5.1. Вывод преобразований Лоренца
- •8.6. Следствия из преобразований Лоренца
- •9.3. Электрическое поле
- •9.3.6. Принцип суперпозиции электрических полей
- •9.3.7. Напряженность поля точечного заряда
- •9.3.8. Линии напряженности
- •9.3.9. Линии напряженности точечных зарядов
- •9.4.4.1. Поле равномерно заряженной бесконечной плоскости
- •9.4.4.3. Поле однородно заряженного бесконечного цилиндра
- •9.9. Проводник в электрическом поле
- •9.10. Электроемкость уединенного проводника
- •9.11. Электроемкость конденсатора
- •9.12. Энергия электрического поля
- •9.12.1. Плотность энергии электрического поля в вакууме
- •9.13. Электрическое поле в диэлектрике
- •9.13.1. Диэлектрик?
- •9.13.1.1. Два типа диэлектриков - полярные и неполярные
- •9.13.2. Поляризованность диэлектрика (вектор поляризации) - это дипольный момент единицы объема:
- •9.13.4.1. Плотность энергии электрического поля в диэлектрике
- •10.4. Закон Ома для участка цепи
- •10.5. Закон Ома в дифференциальной форме
- •10.6. Закон Джоуля-Ленца в дифференциальной форме
- •Магнетизм. Уравнения Максвелла
- •11.5.6. Магнитное поле тороида
- •11.6. Закон Ампера
- •11.7. Сила Лоренца - это сила, действующая со стороны магнитного поля на движущийся в нем заряд
- •11.7.1. Движение заряженной частицы в однородном магнитном поле
- •11.8. Рамка с током в магнитном поле
- •11.11.1. Потокосцепление
- •11.11.2. Индуктивность соленоида
- •11.11.3. Энергия магнитного поля
- •12. Магнитное поле в веществе
- •12.2. Классификация магнетиков
- •13. Уравнения Максвелла
- •13.3. Система уравнений Максвелла в интегральной форме
- •13.4. Система уравнений Максвелла в дифференциальной форме
5.6.1. Консервативность силы тяжести
На
приведенном выше рисунке дан вид сбоку.
Точка m
движется
под действием силы тяжести из 1 в 2. Сила
тяжести всегда направлена вниз!
вектор
перемещения,
.
При любой траектории ответ будет таким же, значит, сила тяжести консервативна.
5.6.2. Неконсервативность силы трения
|
На
рисунке изображен вид сверху на
материальную точку m,
движущуюся при наличии силы трения
из положения 1 в положение 2.
Сила
трения всегда направлена против
скорости
|
.
Ответ зависит от выбора траектории, значит, сила трения неконсервативна.
5.7. Потенциальная энергия может быть введена только для поля консервативных сил
Так как их работа не зависит от траектории, а только от начального и конечного положений материальной точки, то эту работу можно записать в виде разности двух чисел: одно - Wn1 - будет зависеть от начального положения тела, второе - Wn2 - от конечного положения тела.
.
Wn1 - потенциальная энергия тела в положении 1; Wn2 - в положении 2.
5.7.1. Некоторые конкретные выражения для потенциальной энергии Wn(r) Для нахождения конкретного вида зависимости Wn(r) необходимо вычислить работу
.
В
частности, для однородного поля тяжести,
где
,
используя(5.6.1),
получим: Wn
= mgh.
Если
-
гравитационная сила, то
Если
-
кулоновская сила, то
.
Если
-
сила упругости, то
.
5.8.Закон сохранения механической энергии
5.8.1.Для одной материальной точки, движущейся в поле консервативных сил, из (5.5)
A12 = Wk2 - Wk1,
из (5.7)
A12 = Wn1 - Wn2.
Откуда
Wn1 - Wn2 = Wk2 - Wk1
или
Wk1 + Wn1 = Wk2 + Wn2.
В поле консервативных сил сумма кинетической и потенциальной энергии материальной точки остается постоянной, т.е. сохраняется.
-
полная энергия материальной точки.
Полная энергия материальной точки в поле консервативных сил сохраняется.
5.8.2. Полная энергия системы материальных точек Для системы, состоящей из N взаимодействующих между собой материальных точек, полная энергия
,
где Wп i, k - потенциальная энергия взаимодействия i -й материальной точки с k-й материальной точкой. Wп - потенциальная энергия взаимодействия всех частиц системы между собой.
5.8.2.1. Закон сохранения энергии для системы материальных точек Если система материальных точек находится во внешнем поле консервативных сил, то еЈ полная механическая энергия
,
где W'п - потенциальная энергия системы во внешнем поле. Полная механическая энергия системы материальных точек, находящейся только под действием консервативных сил, остается постоянной. При наличии неконсервативных сил полная механическая энергия системы не сохраняется, ее убыль равна работе неконсервативных сил.
6. Кинематика вращательного движения
6.1. Поступательное и вращательное движение
|
В данном примере траектория центра масс - окружность, остальные точки тела также движутся по окружностям , но центры этих окружностей не лежат на одной прямой. |
а) поступательное движение. Любая линия, проведенная в твердом теле, при движении остается параллельной самой себе.
|
Здесь, как и в предыдущем примере а), центр масс тела движется по той же окружности. |
б) вращательное движение, центр масс движется по окружности того же радиуса. Каждая точка твердого тела движется по своей окружности; центры всех окружностей лежат на прямой, называемой осью вращения.