
- •ПРЕДИСЛОВИЕ
- •УКАЗАНИЯ ЧИТАТЕЛЯМ
- •1. ЭРА МОДЕЛИРОВАНИЯ
- •1.1. ВВЕДЕНИЕ
- •1.1.1.Необходимость моделирования
- •1.1.2.Типы моделей
- •1.1.3.Моделирование пласта
- •1.2. РАЗВИТИЕ МОДЕЛИРОВАНИЯ
- •1.2.1.Уравнение материального баланса
- •1.2.2.Аналоговые резистивно-емкостные сетки
- •1.2.3.Электролитические модели
- •1.2.4.Потенциометрические модели
- •1.2.5.Численные модели
- •1.3. ЦЕЛЬ МОДЕЛИРОВАНИЯ ПЛАСТОВ
- •1.3.1.Проектирование подземных хранилищ
- •1.3.2.Моделирование.скважин
- •1.4. ПРЕИМУЩЕСТВА МОДЕЛИРОВАНИЯ
- •2. ПОНЯТИЯ ПОДЗЕМНОЙ ГИДРОДИНАМИКИ В МОДЕЛИРОВАНИИ
- •2.1. ВВЕДЕНИЕ
- •2.1.1.Закон Дарси. Понятие проницаемости
- •2.1.2.Потенциал скорости течения
- •2.1.3.Течение реального газа. Потенциал скорости реального газа
- •2.1.4.Стационарное и нестационарное течения
- •2.2. ТИПЫ ФЛЮИДОВ [4]
- •2.3. ХАРАКТЕР ТЕЧЕНИЯ ФЛЮИДОВ В ПОРИСТОЙ СРЕДЕ
- •2.3.1.Относительная проницаемость
- •2.3.1.Относительная проницаемость породы для вытесняющей фазы
- •3. СОСТАВЛЕНИЕ УРАВНЕНИЙ ДЛЯ МОДЕЛИРОВАНИЯ ПЛАСТА
- •3.1. ВВЕДЕНИЕ
- •3.2. СОСТАВЛЕНИЕ УРАВНЕНИЙ [1—5]
- •3.2.1.Порядок составления уравнений
- •3.2.2.фильтрация однофазного флюида
- •3.3. ОСНОВНЫЕ УРАВНЕНИЯ ФИЛЬТРАЦИИ МНОГОФАЗНОГО ФЛЮИДА [2]
- •3.3.1.Вывод уравнения фильтрации трехфазного флюида для радиальной схемы пласта
- •3.3.2.Вывод уравнения фильтрации многофазного флюида для одномерной схемы пласта
- •3.4. МНОГОКОМПОНЕНТНЫЕ СИСТЕМЫ [8], [9]
- •ВВЕДЕНИЕ
- •1. ОБОРУДОВАНИЕ ОБЩЕГО НАЗНАЧЕНИЯ
- •1.2. Оборудование ствола скважины, законченной бурением
- •1.3. Трубы
- •1.3.2.Трубы обсадные
- •1.3.3.Бурильные трубы
- •1.3.4.Трубы для нефтепромысловых коммуникаций
- •1.4. Скважинные уплотнители (пакеры)
- •2. ОБОРУДОВАНИЕ ФОНТАННЫХ СКВАЖИН
- •2.1. Наземное оборудование
- •2.2. Подземное оборудование фонтанных скважин
- •3. ШТАНГОВЫЕ НАСОСНЫЕ УСТАНОВКИ (ШСНУ)
- •3.1. Станки-качалки
- •3.2. Устьевое оборудование
- •3.3. Штанги насосные (ШН)
- •3.4. Штанговые скважинные насосы ШСН
- •3.5. Производительность насоса
- •3.6. Правила безопасности при эксплуатации скважин штанговыми насосами
- •4. БЕСШТАНГОВЫЕ СКВАЖИННЫЕ НАСОСНЫЕ УСТАНОВКИ
- •4.1. Установки погружных электроцентробежных насосов (УЭЦН)
- •4.2. Установки погружных винтовых электронасосов
- •4.4. Арматура устьевая
- •4.5. Комплекс оборудования типа КОС и КОС1
- •4.6. Установки гидропоршневых насосов для добычи нефти (УГН)
- •4.7. Струйные насосы
- •5. ОБОРУДОВАНИЕ ГАЗЛИФТНЫХ СКВАЖИН
- •5.1. Газлифтная установка ЛН
- •7. ВИНТОВЫЕ ПОГРУЖНЫЕ НАСОСЫ С ПРИВОДОМ НА УСТЬЕ СКВАЖИНЫ
- •ВВЕДЕНИЕ
- •I. ОСНОВНЫЕ ПОЛОЖЕНИЯ «КЛАССИФИКАЦИИ ЗАПАСОВ МЕСТОРОЖДЕНИИ, ПЕРСПЕКТИВНЫХ И ПРОГНОЗНЫХ РЕСУРСОВ НЕФТИ И ГОРЮЧИХ ГАЗОВ»
- •1.1 СУЩНОСТЬ КЛАССИФИКАЦИИ ЗАПАСОВ И РЕСУРСОВ
- •1.2. КОМПЛЕКСНЫЙ ПОДХОД К ИЗУЧЕНИЮ НЕФТЯНЫХ И ГАЗОВЫХ МЕСТОРОЖДЕНИИ
- •1. 3. ЗАЛЕЖИ НЕФТИ И ГАЗА И ИХ ОСНОВНЫЕ КЛАССИФИКАЦИОННЫЕ ПРИЗНАКИ И ПАРАМЕТРЫ
- •1.3.1 Флюиды
- •1.3.1.1. Нефть
- •1.3.1.2. Газы
- •1.3.1.3. Конденсат
- •1.4. ПРИРОДНЫЕ РЕЗЕРВУАРЫ
- •1.5. УСЛОВИЯ ЗАЛЕГАНИЯ ФЛЮИДОВ В ЗАЛЕЖИ
- •1.5.1. Основные типы залежей
- •1.5.2. Классификация залежей по фазовому состоянию УВ
- •1.5.3. Основные особенности, характеризующие условия разработки залежи
- •1.6. МЕСТОРОЖДЕНИЯ НЕФТИ И ГАЗА И ИХ ОСНОВНЫЕ КЛАССИФИКАЦИОННЫЕ ПРИЗНАКИ
- •1.8. КОМПЛЕКСНОЕ ИЗУЧЕНИЕ НЕФТЕГАЗОНОСНЫХ ОБЪЕКТОВ НА РАЗЛИЧНЫХ ЭТАПАХ И СТАДИЯХ ГЕОЛОГОРАЗВЕДОЧНЫХ РАБОТ И РАЗРАБОТКИ
- •1.8.1. Региональный этап
- •1.8.1.1. Стадия прогнозирования нефтегазоносности
- •1.8.1.2. Стадия оценки зон нефтегазонакопления
- •1.8.2 Поисковый этап
- •1.8.2.1. Стадия выявления и подготовки объектов для поискового бурения
- •1.8.2.2. Стадия поиска месторождений (залежей)
- •1.8.3. Разведочный этап
- •1.8.3.1. Стадия оценки месторождений (залежей)
- •1.8.3.2. Стадия подготовки месторождений (залежей) к разработке
- •1.9. КАТЕГОРИИ ЗАПАСОВ, ПЕРСПЕКТИВНЫХ И ПРОГНОЗНЫХ РЕСУРСОВ НЕФТИ И ГАЗА И ИХ НАЗНАЧЕНИЕ
- •1.11. ПОДГОТОВЛЕННОСТЬ РАЗВЕДАННЫХ МЕСТОРОЖДЕНИЙ (ЗАЛЕЖЕЙ) НЕФТИ И ГАЗА ДЛЯ ПРОМЫШЛЕННОГО ОСВОЕНИЯ
- •2. ВЫДЕЛЕНИЕ ОЦЕНОЧНЫХ И ПОДСЧЕТНЫХ ОБЪЕКТОВ РЕСУРСОВ И ЗАПАСОВ НЕФТИ И ГАЗА
- •2.1 ВЗАИМОСВЯЗЬ КАТЕГОРИИ ЗАПАСОВ И РЕСУРСОВ С ЭТАПАМИ И СТАДИЯМИ ГЕОЛОГОРАЗВЕДОЧНЫХ РАБОТИ РАЗРАБОТКИ ЗАЛЕЖЕЙ
- •2. 2 ВЫДЕЛЕНИЕ ОЦЕНОЧНЫХ ОБЪЕКТОВ ПРОГНОЗНЫХ РЕСУРСОВ
- •2. 3. ВЫДЕЛЕНИЕ ПОДСЧЕТНЫХ ОБЪЕКТОВ ПЕРСПЕКТИВНЫХ РЕСУРСОВ
- •2.4. ПОДСЧЕТНЫЕ ОБЪЕКТЫ ЗАПАСОВ НЕФТИ И ГАЗА
- •3. СУММАРНЫЕ РЕСУРСЫ НЕФТИ, ГАЗА И КОНДЕНСАТА
- •4. ОБЪЕМНЫЙ МЕТОД ПОДСЧЕТА НАЧАЛЬНЫХ БАЛАНСОВЫХ ЗАПАСОВ НЕФТИ И СВОБОДНОГО ГАЗА
- •4. 1. СУЩНОСТЬ ОБЪЕМНОГО МЕТОДА
- •4. 2. ОСНОВНЫЕ ЭТАПЫ ПОДСЧЕТА ЗАПАСОВ НЕФТИ И СВОБОДНОГО ГАЗА ОБЪЕМНЫМ МЕТОДОМ
- •4.3. ПОДСЧЕТ ЗАПАСОВ НЕФТИ И СВОБОДНОГО ГАЗА НА РАЗНЫХ СТАДИЯХ ИЗУЧЕННОСТИ ЗАЛЕЖЕЙ В КОЛЛЕКТОРАХ ПОРОВОГО ТИПА
- •4.3.2. ПОДСЧЕТ ЗАПАСОВ НА СТАДИИ ОЦЕНКИ МЕСТОРОЖДЕНИЙ (ЗАЛЕЖЕЙ)
- •4.3.3. ПОДСЧЕТ ЗАПАСОВ ПО ЗАВЕРШЕНИЮ РАЗВЕДОЧНОГО ЭТАПА
- •4.3.4. ОСОБЕННОСТИ ПОДСЧЕТА ЗАПАСОВ НА РАЗРАБАТЫВАЮЩИХСЯ ЗАЛЕЖАХ
- •5. МЕТОДЫ ОПРЕДЕЛЕНИЯ НАЧАЛЬНЫХ ИЗВЛЕКАЕМЫХ ЗАПАСОВ НЕФТИ И ГАЗА
- •5.1. МЕТОДЫ ОПРЕДЕЛЕНИЯ ПРОЕКТНЫХ КОЭФФИЦИЕНТОВ ИЗВЛЕЧЕНИЯ НЕФТИ ПРИ ВОДОНАПОРНОМ РЕЖИМЕ
- •5.2. ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ИЗВЛЕЧЕНИЯ НЕФТИ ПРИ ПОДСЧЕТЕ ЗАПАСОВ ЗАЛЕЖЕЙ, ВВОДИМЫХ В РАЗРАБОТКУ, И ПРИ ПЕРЕСЧЕТЕ ЗАПАСОВ РАЗРАБАТЫВАЕМЫХ ЗАЛЕЖЕЙ
- •5.3. ПОНЯТИЕ О КОЭФФИЦИЕНТЕ ИЗВЛЕЧЕНИЯ ГАЗА
- •6. ПОДСЧЕТ ЗАПАСОВ РАСТВОРЕННОГО В НЕФТИ ГАЗА И ЕГО КОМПОНЕНТОВ
- •6.1.ПОДСЧЕТ ЗАПАСОВ ГАЗА, РАСТВОРЕННОГО В НЕФТИ
- •6.2. ПОДСЧЕТ БАЛАНСОВЫХ ЗАПАСОВ ЭТАНА, ПРОПАНА, БУТАНОВ. СЕРОВОДОРОДА И ДРУГИХ ПОЛЕЗНЫХ КОМПОНЕНТОВ
- •7.ПЕРЕВОД ЗАПАСОВ НЕФТИ И ГАЗА В БОЛЕЕ ВЫСОКИЕ КАТЕГОРИИ И ПЕРЕСЧЕТ (ПОВТОРНЫЙ ПОДСЧЕТ) ЗАПАСОВ
- •7.1. ПЕРЕВОД ЗАПАСОВ В БОЛЕЕ ВЫСОКИЕ КАТЕГОРИИ
- •Модуль
- •Продуктивность скважин.
- •Введение
- •Этапы добычи на нефтяном месторождения
- •Как мы способствуем повреждению пласта?
- •Как преодолеть повреждение пласта?
- •Другие факторы, влияющие на продуктивность скважины
- •ВВЕДЕНИЕ
- •1. КОЛЛЕКТОРСКИЕ СВОЙСТВА ГОРНЫХ ПОРОД
- •1.1. ТИПЫ ПОРОД-КОЛЛЕКТОРОВ
- •1.2. ПОРИСТОСТЬ
- •1.2.1. Виды пористости
- •1.3. ПРОНИЦАЕМОСТЬ
- •1.3.1. Линейная фильтрация нефти и газа в пористой среде
- •1.3.2. Радиальная фильтрация нефти и газа в пористой среде
- •1.3.3. Оценка проницаемости пласта, состоящего из нескольких пропластков различной проницаемости
- •1.3.4. Классификация проницаемых пород
- •1.3.5. Зависимость проницаемости от пористости
- •1.3.6. Виды проницаемости
- •2. МЕХАНИЧЕСКИЕ И ТЕПЛОВЫЕ СВОЙСТВА ПОРОД
- •2.1. МЕХАНИЧЕСКИЕ СВОЙСТВА ГОРНЫХ ПОРОД
- •2.2. ТЕПЛОВЫЕ СВОЙСТВА ГОРНЫХ ПОРОД
- •3. СОСТАВ И ФИЗИЧЕСКИЕ СВОЙСТВА ГАЗА, НЕФТИ И ПЛАСТОВЫХ ВОД
- •3.1.1. Состав природных газов
- •3.1.2. Физико-химические свойства углеводородных газов
- •3.1.3. Растворимость газов в нефти и воде
- •3.2. СОСТАВ И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ПЛАСТОВОЙ ВОДЫ
- •3.2.1. Физико-химические свойства пластовых вод
- •3.3. СОСТАВ И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА НЕФТЕЙ
- •3.3.1. Физико-химические свойства нефти
- •4. ФАЗОВЫЕ СОСТОЯНИЯ УГЛЕВОДОРОДНЫХ СИСТЕМ
- •4.1. СХЕМА ФАЗОВЫХ ПРЕВРАЩЕНИЙ ОДНОКОМПОНЕНТНЫХ СИСТЕМ
- •4.2. ФАЗОВЫЕ ПЕРЕХОДЫ В НЕФТИ, ВОДЕ И ГАЗЕ
- •5. ПОВЕРХНОСТНО-МОЛЕКУЛЯРНЫЕ СВОЙСТВА СИСТЕМЫ ПЛАСТ-ВОДА
- •6. ФИЗИЧЕСКИЕ ОСНОВЫ ВЫТЕСНЕНИЯ НЕФТИ, КОНДЕНСАТА И ГАЗА ИЗ ПОРИСТОЙ СРЕДЫ
- •6.1. ИСТОЧНИКИ ПЛАСТОВОЙ ЭНЕРГИИ
- •6.2. СИЛЫ, ДЕЙСТВУЮЩИЕ В ЗАЛЕЖИ
- •6.3. ПОВЕРХНОСТНЫЕ ЯВЛЕНИЯ ПРИ ФИЛЬТРАЦИИ ПЛАСТОВЫХ ЖИДКОСТЕЙ И ПРИЧИНЫ НАРУШЕНИЯ ЗАКОНА ДАРСИ
- •6.4. ОБЩАЯ СХЕМА ВЫТЕСНЕНИЯ ИЗ ПЛАСТА НЕФТИ ВОДОЙ И ГАЗОМ
- •6.5. НЕФТЕОТДАЧА ПЛАСТОВ ПРИ РАЗЛИЧНЫХ УСЛОВИЯХ ДРЕНИРОВАНИЯ ЗАЛЕЖИ
- •6.6. РОЛЬ КАПИЛЛЯРНЫХ ПРОЦЕССОВ ПРИ ВЫТЕСНЕНИИ НЕФТИ ВОДОЙ ИЗ ПОРИСТЫХ СРЕД
- •6.7. ЗАВИСИМОСТЬ НЕФТЕОТДАЧИ ОТ СКОРОСТИ ВЫТЕСНЕНИЯ НЕФТИ ВОДОЙ
- •ЛИТЕРАТУРА
- •ВВЕДЕНИЕ
- •1. ПРАВОВЫЕ И ОРГАНИЗАЦИОННЫЕ ОСНОВЫ ОХРАНЫ ОКРУЖАЮЩЕЙ ПРИРОДНОЙ СРЕДЫ
- •1.1.ПРАВОВАЯ ОСНОВА ОХРАНЫ ОКРУЖАЮЩЕЙ ПРИРОДНОЙ СРЕДЫ
- •1.1.1.Концепция охраны окружающей природной среды
- •1.1.2.Правовые аспекты охраны окружающей природной среды
- •1.1.3.Эколого-правовая ответственность
- •1.1.4.Возмещение вреда природной среде
- •2.1.Принципы управления охраной природы в нефтяной и газовой промышленности
- •2.2.Совершенствование системы информационного обеспечения
- •2.3.Совершенствование системы экономического стимулирования природоохранной деятельности нефтегазодобывающих предприятий
- •2.4. Критерии качества среды и нормативы воздействия
- •3. ЭКОЛОГО - ЭКОНОМИЧЕСКАЯ ОПТИМИЗАЦИЯ ПРИРОДОПОЛЬЗОВАНИЯ
- •3.1. Организационные подходы и методы минимизации воздействия производств на окружающую среду
- •3.2. Технологические и технические подходы и методы минимизации воздействия производств на окружающую среду
- •3.3.Экологическая характеристика нефтегазодобывающего производства
- •4. ИСТОЧНИКИ И МАСШТАБЫ ТЕХНОГЕННОГО ЗАГРЯЗНЕНИЯ В НЕФТЯНОЙ ПРОМЫШЛЕННОСТИ
- •5. СТРОИТЕЛЬСТВО СКВАЖИН
- •5.1.Источники загрязнения
- •Источники загрязнения
- •5.2.Характер загрязнения природной среды
- •5.3.Влияние отходов на водные объекты
- •5.4.Влияние отходов на почву
- •6. СТРОИТЕЛЬСТВО
- •7. ИНТЕНСИФИКАЦИЯ ДОБЫЧИ НЕФТИ
- •8. ОБЪЕКТЫ СБОРА И ПОДГОТОВКИ НЕФТИ
- •8.1. Схемы водоснабжения системы заводнения нефтяных месторождений
- •8.2. ЭЛЕМЕНТЫ ФАКЕЛЬНОЙ СИСТЕМЫ
- •8.2.1. КЛАССИФИКАЦИЯ ФАКЕЛЬНЫХ УСТАНОВОК
- •Рис.2. Условия стабильного горения
- •L – длина пламени, d – диаметр факельной трубы
- •8.2.2. РАСЧЕТ ДИАМЕТРА ФАКЕЛЬНОЙ ТРУБЫ
- •8.2.3. РАСЧЕТ ВЫСОТЫ ФАКЕЛЬНОЙ ТРУБЫ
- •8.2.4. ШУМ ПРИ ФАКЕЛЬНОМ СЖИГАНИИ ГАЗА
- •8.2.5. АВАРИИ НА ФАКЕЛЬНЫХ УСТАНОВКАХ
- •8.2.6. ТЕПЛОВОЕ ИЗЛУЧЕНИЕ
- •9. ВЗАИМОВЛИЯНИЕ СИСТЕМ ТРУБОПРОВОДНОГО ТРАНСПОРТА И ПРИРОДНОЙ СРЕДЫ
- •11. ПРИРОДООХРАННЫЕ ТЕХНОЛОГИИ И ОСНОВНЫЕ ТРЕБОВАНИЯ К НИМ
- •12. ОХРАНА НЕДР И ОКРУЖАЮЩЕЙ СРЕДЫ
- •12.1. ОХРАНА ВОДНЫХ РЕСУРСОВ
- •12.1.1 Поверхностные воды
- •12.1.2 Подземные воды
- •12.2. Утилизация вод нефтяных месторождений
- •12.3. ОХРАНА ПРИРОДНЫХ ВОД
- •12.4. ВОДОПОЛЬЗОВАНИЕ И ВОДООТВЕДЕНИЕ НА ОБЪЕКТАХ НЕФТЕГАЗОВОГО КОМПЛЕКСА
- •12.5. ОЦЕНКА ЗАГРЯЗНЕНИЯ ВОДНОЙ СРЕДЫ
- •12.5.1. Критерии, отражающие воздействие отдельных факторов
- •12.5.2. Экологические интегральные критерии оценки качества вод
- •12.6. РАСЧЕТ ПРЕДЕЛЬНО ДОПУСТИМОГО СБРОСА СТОЧНЫХ ВОД
- •12.7. ТЕХНОЛОГИИ ОЧИСТКИ СТОЧНЫХ ВОД
- •12.7.2. Технология путевого сброса воды
- •13. СПОСОБЫ БОРЬБЫ С НЕФТЕЗАГРЯЗНЕНИЕМ ВОДНЫХ ОБЪЕКТОВ
- •13.1. Механические методы удаления нефти
- •13.3. Химические методы удаления разливов нефти
- •13.4. Микробиологическое разложение нефти
- •13.5. Технология сбора плавающей нефти с водных поверхностей
- •14. ОХРАНА ЗЕМЕЛЬНЫХ РЕСУРСОВ
- •14.1. ОХРАНА АТМОСФЕРЫ
- •14.1.1.Нефтяной газ как источник загрязнения атмосферы
- •14.2. ОСНОВНЫЕ НАПРАВЛЕНИЯ ОХРАНЫ НЕДР НЕФТЯНЫХ МЕСТОРОЖДЕНИЙ
- •14.3. ОХРАНА НЕДР И ОКРУЖАЮЩЕЙ СРЕДЫ В ПРОЦЕССЕ РАЗБУРИВАНИЯ НЕФТЯНОГО МЕСТОРОЖДЕНИЯ
- •14.4. ОХРАНА НЕДР И ОКРУЖАЮЩЕЙ СРЕДЫ ПРИ РАЗРАБОТКЕ НЕФТЯНЫХ МЕСТОРОЖДЕНИЙ
- •15. ЭКОЛОГИЧЕСКИЕ АСПЕКТЫ МЕТОДОВ ИНТЕНСИФИКАЦИИ НЕФТЕОТДАЧИ ПЛАСТОВ
- •15.1. ЗАВОДНЕНИЕ
- •15.1.1. ЗАВОДНЕНИЕ С ИСПОЛЬЗОВАНИЕМ ХИМРЕАГЕНТОВ
- •15.1.2. ЗАВОДНЕНИЕ С ПРИМЕНЕНИЕМ ПОЛИМЕРНЫХ РАСТВОРОВ
- •15.1.3. ЗАКАЧКА ГОРЯЧЕЙ ВОДЫ И ПАРА
- •15.2. МЕТОД ВЛАЖНОГО И СВЕРХВЛАЖНОГО ВНУТРИПЛАСТОВОГО ГОРЕНИЯ
- •16. ЭКОЛОГИЧЕСКИЕ АСПЕКТЫ МЕТОДОВ РАЗРАБОТКИ МЕСТОРОЖДЕНИЙ
- •17. МОНИТОРИНГ НЕФТЯНОГО ЗАГРЯЗНЕНИЯ
- •17.1. СИСТЕМА НАБЛЮДЕНИЯ ЗА НЕФТЯНЫМ ЗАГРЯЗНЕНИЕМ
- •17.2. КОНТРОЛЬ ЗА ЗАГРЯЗНЕНИЕМ ОКРУЖАЮЩЕЙ СРЕДЫ В ЗОНЕ ДЕЯТЕЛЬНОСТИ НЕФТЕГАЗОДОБЫВАЮЩИХ УПРАВЛЕНИЙ

vk.com/club152685050 | vk.com/id446425943
Из примеров следует, что процедура определения потенциала скорости течения заключается в следующем.
1.Необходимо выбрать 2 точки, обычно по одной с каждой стороны пористой среды.
2.Для этих точек с помощью уравнения (2.11) записываются уравнение потенциала и уравнение для определения давления при гидростатическом напоре:
3.Записывается уравнение течения в трубе для получения другого уравнения, если в этом есть необходимость:
4.Приравниваются дебиты или скорости и решается полученное уравнение.
2.1.3.Течение реального газа. Потенциал скорости реального газа
Предполагается, что .при идеальных условиях свойства большинства газов не зависят от давлений. Это допущение позволяет использовать простые законы идеальных газов для анализа их свойств. Так как природные газы не подчиняются законам для идеальных газов, следует учитывать изменения свойств природного газа под действием давления. Обычно учитывается следующее:
1)изменение вязкости под давлением;
2)изменение коэффициента сжимаемости газа под давлением.
До настоящего времени анализ характера течения газа основывался на использовании метода линеаризации, для чего физические параметры определялись при средних давлениях. Это справедливо в том случае, если градиенты давлений очень малы, хотя эта ситуация имеет мало общего с ситуацией в реальном пласте, чтобы упростить расчеты и устранить некоторые допущения, Аль-Хусейни и др. ввели функцию, названную потенциалом скорости течения реального газа. При этом давление, вязкость и коэффициент z рассматриваются как одна переменная. Математически этот потенциал определяется следующим образом:
где рi - давление в произвольной точке отсчета; р - давление газа; μ - вязкость; z - коэффициент сжимаемости; р' - фиктивная переменная интегрирования.
Эта функция используется в основном при обработке данных исследования газовых скважин и в однофазных моделях для природного газа. Она не используется в моделях пластов, в 'которых происходит совместная фильтрация газа, нефти и воды. Справедливость подхода, изложенного в [3], видна из сравнения следующих двух уравнений:

vk.com/club152685050 | vk.com/id446425943
Из уравнения (2.16) видно, что дебит является функцией λ - константы, зависящей только от свойств породы, размеров пористого пространства и градиента потенциала, в то время как в уравнении (2.17) дебит - функция некоторого давления р, вязкости, коэффициента сжимаемости, а также градиента давлений. Введение потенциала скорости реального газа .позволяет получить более реалистичное представление о процессе и упростить уравнения.
2.1.4.Стационарное и нестационарное течения
Понятия стационарного и нестационарного течений относятся к одним из наиболее сложных. Известно, что невозможно добыть из пласта большое количество нефти на следующий день после закачки в него сотен кубических метров воды. Это объясняется особенностями движения флюида внутри порового пространства породы, когорые проявляются в изменении давлений. Вследствие того что давление можно легко измерить, рассмотрим понятия стационарного и нестационарного течений флюидов с точки зрения изменения давления. Кроме того, можно использовать и другой параметр - изменение плотности жидкости.
Вначале проследим за траекторией частицы флюида, движущейся по порам породы, как показано на рис. 2.6. Скорость частицы обозначим через Vs.
Ускорение частицы можно получить путем определения быстроты изменения вектора ее
скорости. Например, так как V = f(s,t) (функция двух переменных), то:
Для полного ускорения частицы
Так •как ds/dt - скорость, то (2.19) можно записать следующим образом:
Первый член справа характеризует ускорение в точке, в то время как второй - конвекционное ускорение. Если записать (2.20), словами, то получим:
Полное ускорение = |
Местное ускорение + |
Конвекционное |
|
|
ускорение |
(Действительная произ- |
(В точке) |
Ускорение, |
водная или дроизводные, |
|
определяемое при |
соответствующие движе- |
|
движении |
нию частицы флюида) |
|
наблюдателя вместе |
|
|
с частицей флюида) |
Изучая два члена,-соответствующие полному ускорению в (2.20), мы можем предсказать, будет режим течения •стационарным или нет.

vk.com/club152685050 | vk.com/id446425943
Если то течение стационарное, а если:
то течение нестационарное. Уравнения (2.21) и (2.22) можно записать относительно давлений. Стационарное течение: Нестационарное течение:
Рассмотрим радиальный симметричный пласт со скважиной конечного радиуса и некоторым конечным внешним радиусом, как показано на рис. 2.7.
Пласт останется в состоянии равновесия, пока на границах не будет приложено некоторое возмущение. В зависимости от природы этого возмущения система может перейти в нестационарное состояние или остаться в стационарном состоянии. Возможны следующие условия.
На внутренней границе:
1.Постоянное давление на забое скважины
2.Постоянный дебит
3.Переменное давление на забое скважины
4.Переменный дебит
5.Отключение скважины .
На внешней границе:
6.Постоянное давление
7.Постоянный переток через границу

vk.com/club152685050 | vk.com/id446425943
8.Переменный переток
9.Замкнутая внешняя граница
10.Бесконечный .пласт
Когда скважина эксплуатируется, давление вокруг внутреннего радиуса начинает падать, 'и волна снижающегося давления движется к границам пласта. Профиль изменения давления как функции времени показан на рис. 2.8. При различных сочетаниях внутренних и внешних граничных условий можно создать область стационарного течения, и, наоборот, возможны некоторые другие граничные условия, при которых течение нестационарно. Нестационарное течение происходит, если внешняя граница замкнута, т. е.
В этом случае отсутствует переток массы через границу, и пласт все время будет истощаться. Условия стационарного течения: наличие притока через границу или постоянное давление на ней. Это возможно, когда водоносный горизонт непосредственно прилегает к нефтяному пласту.
Рис. 2.8. Профиль |
давления в радиальной системе |
На рисунке |
показаны кривые распределения |
давления, соответствующие моментам времени t = ∞ и t5 > t4 > t3.
2.2. ТИПЫ ФЛЮИДОВ [4]
Пластовые флюиды в зависимости от их сжимаемости можно 'подразделить на 3 группы. В некоторых случаях эти классификации произвольны и делаются только с целью упрощения предпосылок. Эти группы следующие:
1)несжимаемые;
2)слабосжимаемые;
3)сжимаемые.
Плотность несжимаемых флюидов постоянная. Для слабосжимаемых флюидов можно заметить изменения плотности в зависимости от давления. Плотность сжимаемых флюидов