
- •ПРЕДИСЛОВИЕ
- •УКАЗАНИЯ ЧИТАТЕЛЯМ
- •1. ЭРА МОДЕЛИРОВАНИЯ
- •1.1. ВВЕДЕНИЕ
- •1.1.1.Необходимость моделирования
- •1.1.2.Типы моделей
- •1.1.3.Моделирование пласта
- •1.2. РАЗВИТИЕ МОДЕЛИРОВАНИЯ
- •1.2.1.Уравнение материального баланса
- •1.2.2.Аналоговые резистивно-емкостные сетки
- •1.2.3.Электролитические модели
- •1.2.4.Потенциометрические модели
- •1.2.5.Численные модели
- •1.3. ЦЕЛЬ МОДЕЛИРОВАНИЯ ПЛАСТОВ
- •1.3.1.Проектирование подземных хранилищ
- •1.3.2.Моделирование.скважин
- •1.4. ПРЕИМУЩЕСТВА МОДЕЛИРОВАНИЯ
- •2. ПОНЯТИЯ ПОДЗЕМНОЙ ГИДРОДИНАМИКИ В МОДЕЛИРОВАНИИ
- •2.1. ВВЕДЕНИЕ
- •2.1.1.Закон Дарси. Понятие проницаемости
- •2.1.2.Потенциал скорости течения
- •2.1.3.Течение реального газа. Потенциал скорости реального газа
- •2.1.4.Стационарное и нестационарное течения
- •2.2. ТИПЫ ФЛЮИДОВ [4]
- •2.3. ХАРАКТЕР ТЕЧЕНИЯ ФЛЮИДОВ В ПОРИСТОЙ СРЕДЕ
- •2.3.1.Относительная проницаемость
- •2.3.1.Относительная проницаемость породы для вытесняющей фазы
- •3. СОСТАВЛЕНИЕ УРАВНЕНИЙ ДЛЯ МОДЕЛИРОВАНИЯ ПЛАСТА
- •3.1. ВВЕДЕНИЕ
- •3.2. СОСТАВЛЕНИЕ УРАВНЕНИЙ [1—5]
- •3.2.1.Порядок составления уравнений
- •3.2.2.фильтрация однофазного флюида
- •3.3. ОСНОВНЫЕ УРАВНЕНИЯ ФИЛЬТРАЦИИ МНОГОФАЗНОГО ФЛЮИДА [2]
- •3.3.1.Вывод уравнения фильтрации трехфазного флюида для радиальной схемы пласта
- •3.3.2.Вывод уравнения фильтрации многофазного флюида для одномерной схемы пласта
- •3.4. МНОГОКОМПОНЕНТНЫЕ СИСТЕМЫ [8], [9]
- •ВВЕДЕНИЕ
- •1. ОБОРУДОВАНИЕ ОБЩЕГО НАЗНАЧЕНИЯ
- •1.2. Оборудование ствола скважины, законченной бурением
- •1.3. Трубы
- •1.3.2.Трубы обсадные
- •1.3.3.Бурильные трубы
- •1.3.4.Трубы для нефтепромысловых коммуникаций
- •1.4. Скважинные уплотнители (пакеры)
- •2. ОБОРУДОВАНИЕ ФОНТАННЫХ СКВАЖИН
- •2.1. Наземное оборудование
- •2.2. Подземное оборудование фонтанных скважин
- •3. ШТАНГОВЫЕ НАСОСНЫЕ УСТАНОВКИ (ШСНУ)
- •3.1. Станки-качалки
- •3.2. Устьевое оборудование
- •3.3. Штанги насосные (ШН)
- •3.4. Штанговые скважинные насосы ШСН
- •3.5. Производительность насоса
- •3.6. Правила безопасности при эксплуатации скважин штанговыми насосами
- •4. БЕСШТАНГОВЫЕ СКВАЖИННЫЕ НАСОСНЫЕ УСТАНОВКИ
- •4.1. Установки погружных электроцентробежных насосов (УЭЦН)
- •4.2. Установки погружных винтовых электронасосов
- •4.4. Арматура устьевая
- •4.5. Комплекс оборудования типа КОС и КОС1
- •4.6. Установки гидропоршневых насосов для добычи нефти (УГН)
- •4.7. Струйные насосы
- •5. ОБОРУДОВАНИЕ ГАЗЛИФТНЫХ СКВАЖИН
- •5.1. Газлифтная установка ЛН
- •7. ВИНТОВЫЕ ПОГРУЖНЫЕ НАСОСЫ С ПРИВОДОМ НА УСТЬЕ СКВАЖИНЫ
- •ВВЕДЕНИЕ
- •I. ОСНОВНЫЕ ПОЛОЖЕНИЯ «КЛАССИФИКАЦИИ ЗАПАСОВ МЕСТОРОЖДЕНИИ, ПЕРСПЕКТИВНЫХ И ПРОГНОЗНЫХ РЕСУРСОВ НЕФТИ И ГОРЮЧИХ ГАЗОВ»
- •1.1 СУЩНОСТЬ КЛАССИФИКАЦИИ ЗАПАСОВ И РЕСУРСОВ
- •1.2. КОМПЛЕКСНЫЙ ПОДХОД К ИЗУЧЕНИЮ НЕФТЯНЫХ И ГАЗОВЫХ МЕСТОРОЖДЕНИИ
- •1. 3. ЗАЛЕЖИ НЕФТИ И ГАЗА И ИХ ОСНОВНЫЕ КЛАССИФИКАЦИОННЫЕ ПРИЗНАКИ И ПАРАМЕТРЫ
- •1.3.1 Флюиды
- •1.3.1.1. Нефть
- •1.3.1.2. Газы
- •1.3.1.3. Конденсат
- •1.4. ПРИРОДНЫЕ РЕЗЕРВУАРЫ
- •1.5. УСЛОВИЯ ЗАЛЕГАНИЯ ФЛЮИДОВ В ЗАЛЕЖИ
- •1.5.1. Основные типы залежей
- •1.5.2. Классификация залежей по фазовому состоянию УВ
- •1.5.3. Основные особенности, характеризующие условия разработки залежи
- •1.6. МЕСТОРОЖДЕНИЯ НЕФТИ И ГАЗА И ИХ ОСНОВНЫЕ КЛАССИФИКАЦИОННЫЕ ПРИЗНАКИ
- •1.8. КОМПЛЕКСНОЕ ИЗУЧЕНИЕ НЕФТЕГАЗОНОСНЫХ ОБЪЕКТОВ НА РАЗЛИЧНЫХ ЭТАПАХ И СТАДИЯХ ГЕОЛОГОРАЗВЕДОЧНЫХ РАБОТ И РАЗРАБОТКИ
- •1.8.1. Региональный этап
- •1.8.1.1. Стадия прогнозирования нефтегазоносности
- •1.8.1.2. Стадия оценки зон нефтегазонакопления
- •1.8.2 Поисковый этап
- •1.8.2.1. Стадия выявления и подготовки объектов для поискового бурения
- •1.8.2.2. Стадия поиска месторождений (залежей)
- •1.8.3. Разведочный этап
- •1.8.3.1. Стадия оценки месторождений (залежей)
- •1.8.3.2. Стадия подготовки месторождений (залежей) к разработке
- •1.9. КАТЕГОРИИ ЗАПАСОВ, ПЕРСПЕКТИВНЫХ И ПРОГНОЗНЫХ РЕСУРСОВ НЕФТИ И ГАЗА И ИХ НАЗНАЧЕНИЕ
- •1.11. ПОДГОТОВЛЕННОСТЬ РАЗВЕДАННЫХ МЕСТОРОЖДЕНИЙ (ЗАЛЕЖЕЙ) НЕФТИ И ГАЗА ДЛЯ ПРОМЫШЛЕННОГО ОСВОЕНИЯ
- •2. ВЫДЕЛЕНИЕ ОЦЕНОЧНЫХ И ПОДСЧЕТНЫХ ОБЪЕКТОВ РЕСУРСОВ И ЗАПАСОВ НЕФТИ И ГАЗА
- •2.1 ВЗАИМОСВЯЗЬ КАТЕГОРИИ ЗАПАСОВ И РЕСУРСОВ С ЭТАПАМИ И СТАДИЯМИ ГЕОЛОГОРАЗВЕДОЧНЫХ РАБОТИ РАЗРАБОТКИ ЗАЛЕЖЕЙ
- •2. 2 ВЫДЕЛЕНИЕ ОЦЕНОЧНЫХ ОБЪЕКТОВ ПРОГНОЗНЫХ РЕСУРСОВ
- •2. 3. ВЫДЕЛЕНИЕ ПОДСЧЕТНЫХ ОБЪЕКТОВ ПЕРСПЕКТИВНЫХ РЕСУРСОВ
- •2.4. ПОДСЧЕТНЫЕ ОБЪЕКТЫ ЗАПАСОВ НЕФТИ И ГАЗА
- •3. СУММАРНЫЕ РЕСУРСЫ НЕФТИ, ГАЗА И КОНДЕНСАТА
- •4. ОБЪЕМНЫЙ МЕТОД ПОДСЧЕТА НАЧАЛЬНЫХ БАЛАНСОВЫХ ЗАПАСОВ НЕФТИ И СВОБОДНОГО ГАЗА
- •4. 1. СУЩНОСТЬ ОБЪЕМНОГО МЕТОДА
- •4. 2. ОСНОВНЫЕ ЭТАПЫ ПОДСЧЕТА ЗАПАСОВ НЕФТИ И СВОБОДНОГО ГАЗА ОБЪЕМНЫМ МЕТОДОМ
- •4.3. ПОДСЧЕТ ЗАПАСОВ НЕФТИ И СВОБОДНОГО ГАЗА НА РАЗНЫХ СТАДИЯХ ИЗУЧЕННОСТИ ЗАЛЕЖЕЙ В КОЛЛЕКТОРАХ ПОРОВОГО ТИПА
- •4.3.2. ПОДСЧЕТ ЗАПАСОВ НА СТАДИИ ОЦЕНКИ МЕСТОРОЖДЕНИЙ (ЗАЛЕЖЕЙ)
- •4.3.3. ПОДСЧЕТ ЗАПАСОВ ПО ЗАВЕРШЕНИЮ РАЗВЕДОЧНОГО ЭТАПА
- •4.3.4. ОСОБЕННОСТИ ПОДСЧЕТА ЗАПАСОВ НА РАЗРАБАТЫВАЮЩИХСЯ ЗАЛЕЖАХ
- •5. МЕТОДЫ ОПРЕДЕЛЕНИЯ НАЧАЛЬНЫХ ИЗВЛЕКАЕМЫХ ЗАПАСОВ НЕФТИ И ГАЗА
- •5.1. МЕТОДЫ ОПРЕДЕЛЕНИЯ ПРОЕКТНЫХ КОЭФФИЦИЕНТОВ ИЗВЛЕЧЕНИЯ НЕФТИ ПРИ ВОДОНАПОРНОМ РЕЖИМЕ
- •5.2. ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ИЗВЛЕЧЕНИЯ НЕФТИ ПРИ ПОДСЧЕТЕ ЗАПАСОВ ЗАЛЕЖЕЙ, ВВОДИМЫХ В РАЗРАБОТКУ, И ПРИ ПЕРЕСЧЕТЕ ЗАПАСОВ РАЗРАБАТЫВАЕМЫХ ЗАЛЕЖЕЙ
- •5.3. ПОНЯТИЕ О КОЭФФИЦИЕНТЕ ИЗВЛЕЧЕНИЯ ГАЗА
- •6. ПОДСЧЕТ ЗАПАСОВ РАСТВОРЕННОГО В НЕФТИ ГАЗА И ЕГО КОМПОНЕНТОВ
- •6.1.ПОДСЧЕТ ЗАПАСОВ ГАЗА, РАСТВОРЕННОГО В НЕФТИ
- •6.2. ПОДСЧЕТ БАЛАНСОВЫХ ЗАПАСОВ ЭТАНА, ПРОПАНА, БУТАНОВ. СЕРОВОДОРОДА И ДРУГИХ ПОЛЕЗНЫХ КОМПОНЕНТОВ
- •7.ПЕРЕВОД ЗАПАСОВ НЕФТИ И ГАЗА В БОЛЕЕ ВЫСОКИЕ КАТЕГОРИИ И ПЕРЕСЧЕТ (ПОВТОРНЫЙ ПОДСЧЕТ) ЗАПАСОВ
- •7.1. ПЕРЕВОД ЗАПАСОВ В БОЛЕЕ ВЫСОКИЕ КАТЕГОРИИ
- •Модуль
- •Продуктивность скважин.
- •Введение
- •Этапы добычи на нефтяном месторождения
- •Как мы способствуем повреждению пласта?
- •Как преодолеть повреждение пласта?
- •Другие факторы, влияющие на продуктивность скважины
- •ВВЕДЕНИЕ
- •1. КОЛЛЕКТОРСКИЕ СВОЙСТВА ГОРНЫХ ПОРОД
- •1.1. ТИПЫ ПОРОД-КОЛЛЕКТОРОВ
- •1.2. ПОРИСТОСТЬ
- •1.2.1. Виды пористости
- •1.3. ПРОНИЦАЕМОСТЬ
- •1.3.1. Линейная фильтрация нефти и газа в пористой среде
- •1.3.2. Радиальная фильтрация нефти и газа в пористой среде
- •1.3.3. Оценка проницаемости пласта, состоящего из нескольких пропластков различной проницаемости
- •1.3.4. Классификация проницаемых пород
- •1.3.5. Зависимость проницаемости от пористости
- •1.3.6. Виды проницаемости
- •2. МЕХАНИЧЕСКИЕ И ТЕПЛОВЫЕ СВОЙСТВА ПОРОД
- •2.1. МЕХАНИЧЕСКИЕ СВОЙСТВА ГОРНЫХ ПОРОД
- •2.2. ТЕПЛОВЫЕ СВОЙСТВА ГОРНЫХ ПОРОД
- •3. СОСТАВ И ФИЗИЧЕСКИЕ СВОЙСТВА ГАЗА, НЕФТИ И ПЛАСТОВЫХ ВОД
- •3.1.1. Состав природных газов
- •3.1.2. Физико-химические свойства углеводородных газов
- •3.1.3. Растворимость газов в нефти и воде
- •3.2. СОСТАВ И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ПЛАСТОВОЙ ВОДЫ
- •3.2.1. Физико-химические свойства пластовых вод
- •3.3. СОСТАВ И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА НЕФТЕЙ
- •3.3.1. Физико-химические свойства нефти
- •4. ФАЗОВЫЕ СОСТОЯНИЯ УГЛЕВОДОРОДНЫХ СИСТЕМ
- •4.1. СХЕМА ФАЗОВЫХ ПРЕВРАЩЕНИЙ ОДНОКОМПОНЕНТНЫХ СИСТЕМ
- •4.2. ФАЗОВЫЕ ПЕРЕХОДЫ В НЕФТИ, ВОДЕ И ГАЗЕ
- •5. ПОВЕРХНОСТНО-МОЛЕКУЛЯРНЫЕ СВОЙСТВА СИСТЕМЫ ПЛАСТ-ВОДА
- •6. ФИЗИЧЕСКИЕ ОСНОВЫ ВЫТЕСНЕНИЯ НЕФТИ, КОНДЕНСАТА И ГАЗА ИЗ ПОРИСТОЙ СРЕДЫ
- •6.1. ИСТОЧНИКИ ПЛАСТОВОЙ ЭНЕРГИИ
- •6.2. СИЛЫ, ДЕЙСТВУЮЩИЕ В ЗАЛЕЖИ
- •6.3. ПОВЕРХНОСТНЫЕ ЯВЛЕНИЯ ПРИ ФИЛЬТРАЦИИ ПЛАСТОВЫХ ЖИДКОСТЕЙ И ПРИЧИНЫ НАРУШЕНИЯ ЗАКОНА ДАРСИ
- •6.4. ОБЩАЯ СХЕМА ВЫТЕСНЕНИЯ ИЗ ПЛАСТА НЕФТИ ВОДОЙ И ГАЗОМ
- •6.5. НЕФТЕОТДАЧА ПЛАСТОВ ПРИ РАЗЛИЧНЫХ УСЛОВИЯХ ДРЕНИРОВАНИЯ ЗАЛЕЖИ
- •6.6. РОЛЬ КАПИЛЛЯРНЫХ ПРОЦЕССОВ ПРИ ВЫТЕСНЕНИИ НЕФТИ ВОДОЙ ИЗ ПОРИСТЫХ СРЕД
- •6.7. ЗАВИСИМОСТЬ НЕФТЕОТДАЧИ ОТ СКОРОСТИ ВЫТЕСНЕНИЯ НЕФТИ ВОДОЙ
- •ЛИТЕРАТУРА
- •ВВЕДЕНИЕ
- •1. ПРАВОВЫЕ И ОРГАНИЗАЦИОННЫЕ ОСНОВЫ ОХРАНЫ ОКРУЖАЮЩЕЙ ПРИРОДНОЙ СРЕДЫ
- •1.1.ПРАВОВАЯ ОСНОВА ОХРАНЫ ОКРУЖАЮЩЕЙ ПРИРОДНОЙ СРЕДЫ
- •1.1.1.Концепция охраны окружающей природной среды
- •1.1.2.Правовые аспекты охраны окружающей природной среды
- •1.1.3.Эколого-правовая ответственность
- •1.1.4.Возмещение вреда природной среде
- •2.1.Принципы управления охраной природы в нефтяной и газовой промышленности
- •2.2.Совершенствование системы информационного обеспечения
- •2.3.Совершенствование системы экономического стимулирования природоохранной деятельности нефтегазодобывающих предприятий
- •2.4. Критерии качества среды и нормативы воздействия
- •3. ЭКОЛОГО - ЭКОНОМИЧЕСКАЯ ОПТИМИЗАЦИЯ ПРИРОДОПОЛЬЗОВАНИЯ
- •3.1. Организационные подходы и методы минимизации воздействия производств на окружающую среду
- •3.2. Технологические и технические подходы и методы минимизации воздействия производств на окружающую среду
- •3.3.Экологическая характеристика нефтегазодобывающего производства
- •4. ИСТОЧНИКИ И МАСШТАБЫ ТЕХНОГЕННОГО ЗАГРЯЗНЕНИЯ В НЕФТЯНОЙ ПРОМЫШЛЕННОСТИ
- •5. СТРОИТЕЛЬСТВО СКВАЖИН
- •5.1.Источники загрязнения
- •Источники загрязнения
- •5.2.Характер загрязнения природной среды
- •5.3.Влияние отходов на водные объекты
- •5.4.Влияние отходов на почву
- •6. СТРОИТЕЛЬСТВО
- •7. ИНТЕНСИФИКАЦИЯ ДОБЫЧИ НЕФТИ
- •8. ОБЪЕКТЫ СБОРА И ПОДГОТОВКИ НЕФТИ
- •8.1. Схемы водоснабжения системы заводнения нефтяных месторождений
- •8.2. ЭЛЕМЕНТЫ ФАКЕЛЬНОЙ СИСТЕМЫ
- •8.2.1. КЛАССИФИКАЦИЯ ФАКЕЛЬНЫХ УСТАНОВОК
- •Рис.2. Условия стабильного горения
- •L – длина пламени, d – диаметр факельной трубы
- •8.2.2. РАСЧЕТ ДИАМЕТРА ФАКЕЛЬНОЙ ТРУБЫ
- •8.2.3. РАСЧЕТ ВЫСОТЫ ФАКЕЛЬНОЙ ТРУБЫ
- •8.2.4. ШУМ ПРИ ФАКЕЛЬНОМ СЖИГАНИИ ГАЗА
- •8.2.5. АВАРИИ НА ФАКЕЛЬНЫХ УСТАНОВКАХ
- •8.2.6. ТЕПЛОВОЕ ИЗЛУЧЕНИЕ
- •9. ВЗАИМОВЛИЯНИЕ СИСТЕМ ТРУБОПРОВОДНОГО ТРАНСПОРТА И ПРИРОДНОЙ СРЕДЫ
- •11. ПРИРОДООХРАННЫЕ ТЕХНОЛОГИИ И ОСНОВНЫЕ ТРЕБОВАНИЯ К НИМ
- •12. ОХРАНА НЕДР И ОКРУЖАЮЩЕЙ СРЕДЫ
- •12.1. ОХРАНА ВОДНЫХ РЕСУРСОВ
- •12.1.1 Поверхностные воды
- •12.1.2 Подземные воды
- •12.2. Утилизация вод нефтяных месторождений
- •12.3. ОХРАНА ПРИРОДНЫХ ВОД
- •12.4. ВОДОПОЛЬЗОВАНИЕ И ВОДООТВЕДЕНИЕ НА ОБЪЕКТАХ НЕФТЕГАЗОВОГО КОМПЛЕКСА
- •12.5. ОЦЕНКА ЗАГРЯЗНЕНИЯ ВОДНОЙ СРЕДЫ
- •12.5.1. Критерии, отражающие воздействие отдельных факторов
- •12.5.2. Экологические интегральные критерии оценки качества вод
- •12.6. РАСЧЕТ ПРЕДЕЛЬНО ДОПУСТИМОГО СБРОСА СТОЧНЫХ ВОД
- •12.7. ТЕХНОЛОГИИ ОЧИСТКИ СТОЧНЫХ ВОД
- •12.7.2. Технология путевого сброса воды
- •13. СПОСОБЫ БОРЬБЫ С НЕФТЕЗАГРЯЗНЕНИЕМ ВОДНЫХ ОБЪЕКТОВ
- •13.1. Механические методы удаления нефти
- •13.3. Химические методы удаления разливов нефти
- •13.4. Микробиологическое разложение нефти
- •13.5. Технология сбора плавающей нефти с водных поверхностей
- •14. ОХРАНА ЗЕМЕЛЬНЫХ РЕСУРСОВ
- •14.1. ОХРАНА АТМОСФЕРЫ
- •14.1.1.Нефтяной газ как источник загрязнения атмосферы
- •14.2. ОСНОВНЫЕ НАПРАВЛЕНИЯ ОХРАНЫ НЕДР НЕФТЯНЫХ МЕСТОРОЖДЕНИЙ
- •14.3. ОХРАНА НЕДР И ОКРУЖАЮЩЕЙ СРЕДЫ В ПРОЦЕССЕ РАЗБУРИВАНИЯ НЕФТЯНОГО МЕСТОРОЖДЕНИЯ
- •14.4. ОХРАНА НЕДР И ОКРУЖАЮЩЕЙ СРЕДЫ ПРИ РАЗРАБОТКЕ НЕФТЯНЫХ МЕСТОРОЖДЕНИЙ
- •15. ЭКОЛОГИЧЕСКИЕ АСПЕКТЫ МЕТОДОВ ИНТЕНСИФИКАЦИИ НЕФТЕОТДАЧИ ПЛАСТОВ
- •15.1. ЗАВОДНЕНИЕ
- •15.1.1. ЗАВОДНЕНИЕ С ИСПОЛЬЗОВАНИЕМ ХИМРЕАГЕНТОВ
- •15.1.2. ЗАВОДНЕНИЕ С ПРИМЕНЕНИЕМ ПОЛИМЕРНЫХ РАСТВОРОВ
- •15.1.3. ЗАКАЧКА ГОРЯЧЕЙ ВОДЫ И ПАРА
- •15.2. МЕТОД ВЛАЖНОГО И СВЕРХВЛАЖНОГО ВНУТРИПЛАСТОВОГО ГОРЕНИЯ
- •16. ЭКОЛОГИЧЕСКИЕ АСПЕКТЫ МЕТОДОВ РАЗРАБОТКИ МЕСТОРОЖДЕНИЙ
- •17. МОНИТОРИНГ НЕФТЯНОГО ЗАГРЯЗНЕНИЯ
- •17.1. СИСТЕМА НАБЛЮДЕНИЯ ЗА НЕФТЯНЫМ ЗАГРЯЗНЕНИЕМ
- •17.2. КОНТРОЛЬ ЗА ЗАГРЯЗНЕНИЕМ ОКРУЖАЮЩЕЙ СРЕДЫ В ЗОНЕ ДЕЯТЕЛЬНОСТИ НЕФТЕГАЗОДОБЫВАЮЩИХ УПРАВЛЕНИЙ

vk.com/club152685050 | vk.com/id446425943
1)критические дебиты (для предотвращения конусообразо-вания газа и воды);
2)максимальные эффективные дебиты (для обеспечения оптимальной работы скважин);
3)степень воздействия интервалов перфорации и размеров трещин на продуктивность скважины
(рис. 1.23).
Модели одиночных скважин, которые иногда называют моделями конусов, так как они
позволяют проводить оценку газовых и водяных конусов, являются экономичными средствами проектирования.
Окончательное решение по разработке пласта можно принять более точно и с большей уверенностью, если руководитель располагает эксплуатационными параметрами. Процесс
Рис. 1.23. Зависимость продуктивности скважин от трещино-ватости коллектора в призабойной зоне: kT1, kT2 - коэффициенты проницаемости трещин
принятия решения, как показано ранее, достаточно сложен при самых упрощенных условиях; поэтому в настоящее время предъявляются все в большей степени повышенные требования к исходной информации, на основании которой составляются планы. Направления применения моделирования в качестве орудия труда инженера показаны на рис. 1.10.
1.4. ПРЕИМУЩЕСТВА МОДЕЛИРОВАНИЯ
Известно, что месторождение можно разработать только один раз, поэтому любая ошибка в этом процессе неисправима. Однако, применяя метод моделирования, можно выполнить эту процедуру несколько раз и изучить различные варианты. При использовании моделирования в качестве средства управления достигается более эффективное использование пластовой энергии, что принпипе приводит к увеличению конечной нефтеотдачи и к более экономичной разработке месторождения. В более сложных системах, например, в случае разработки слоистых неоднородных пластов при смешанном режиме, раньше было невозможно управлять всеми переменными, а сегодня инженер может исследовать эти системы без значительных упрощений.
Значительным преимуществом моделирования является то, что использование этого метода позволяет объединить все данные, присущие .пласту, в одну компактную систему, исследование которой без этого метода невозможно.
2. ПОНЯТИЯ ПОДЗЕМНОЙ ГИДРОДИНАМИКИ В МОДЕЛИРОВАНИИ
2.1. ВВЕДЕНИЕ
Течение флюидов в пористой среде - сложное явление, которое нельзя так просто описать математическим путем, как движение жидкости по трубам или электрический ток в проводах. Довольно легко измерить длину и диаметр трубы и вычислить ее пропускную способность как функцию давления.
Течение флюидов в пористой среде отличается тем, что в этом процессе не существует

vk.com/club152685050 | vk.com/id446425943
трубок тока с четко очерченными сечениями, площадь которых можно было бы измерить. Анализ движения флюидов в пористой среде развивался по двум направлениям: аналитическому и экспериментальному.
Физики, инженеры, гидравлики и другие специалисты исследовали экспериментальным путем характеристики различных флюидов в пористых средах - от песка до молотого стекла. На основе этого анализа были сформулированы законы и корреляционные зависимости, которые можно было бы использовать для аналитических предсказаний поведения подобных систем.
Для описания характера течения флюидов в пористой среде используют понятия (проницаемости, потенциала скорости течения, относительных проницаемостей однофазной и многофазной систем, а также сжимаемости флюида), которые необходимо вначале объяснить, чтобы соответствующим образом сформулировать уравнения модели.
2.1.1.Закон Дарси. Понятие проницаемости
Предсказание характеристики нефтяного пласта зависит от возможности инженера прогнозировать свойства флюидов в пласте. После оценки пористости пласта и насыщенности его флюидами можно определить добывные возможности месторождения.
Для того чтобы количественно определить способность породы проводить флюиды, необходимо ввести понятие проницаемости породы. Проницаемость - это петрофизическая константа, определяемая законом Дарси,. который гласит:
скорость фильтрации однородной жидкости в пористой среде прямо пропорциональна градиенту гидравлического давления и площади сечения, перпендикулярной к направлению потока, и обратно пропорциональна ее вязкости.
Запишем этот закон в математической форме следующим образом:
где Vs - массовая скорость в направлении потока s; k - проницаемость для однородных флюидов; μ - динамическая вязкость; p - давление: z - вертикальная координата; v - удельный объем (v=1/ρg); ρ - плотность флюида; g - ускорение свободного падения тела.
С помощью уравнения (2.1) можно определить проницаемость в пористой среде. Сумма характеризует потенциал скорости фильтрации флюида, поэтому уравнение (2.1) можно записать в виде:
где Ф - полный потенциал скорости движения флюида.
Более подробно о потенциале скорости см. в следующем разделе. Закон Дарси был установлен эмпирически и, как следует из уравнений (2.1) и (2.2), может быть представлен дифференциальным уравнением, относящимся к точке. При этом значения параметров k, Ф, μ, v в уравнении могут изменяться от точки к точке, что при использовании уравнений необходимо учитывать.
В экспериментах Дарси были введены следующие предположения, ограничивающие области применения закона:
1.Флюид - однородный и однофазный.
2.Отсутствуют химические реакции между средой и флюидом.
3.Проницаемость не зависит от типа флюида, температуры, давления и пространственных
координат.
4.Течение считается ламинарным, т. е. отсутствует турбулентность.
5.Отсутствует электрокинетический эффект( Разность потенциалов, возникающая при движении жидкости под давлением через пористую мембрану или капилляр. Эту величину обычно называют дзета-потенциалом).
6.Отсутствует эффект Клинкенберга(Если .размер пор приближается к размеру длины свободного пробега молекул, возникает эффект прилипания частиц к стенкам.).

vk.com/club152685050 | vk.com/id446425943
Закон Дарси предназначался для описания одномерных систем, однако действие этого закона было распространено на многомерные системы не потому, что была доказана его применимость в этом случае, а потому, что никто не смог доказать его неприменимость.
Единица проницаемости называется дарси (Д). Ее размерность можно определить следующим
Размерности величин левой и правой частей уравнения должны совпадать. Выразим 'параметры уравнения Дарси через массу М, длину и время Г:
образом:
Таким образом, размерность единицы проницаемости соответствует квадрату длины.
Подставляя (2.4) в (2.1), получим:
2.1.2.Потенциал скорости течения
При фильтрации флюидов в пористых средах векторы массовой скорости всегда ортогональны к эквипотенциальным поверхностям, скалярные их значения пропорциональны
градиентам |
|
Таким |
характеризует |
массовую скорость и Суммарный поток флюидов. Хьюберт определяет потенциал Ф как потенциальную энергию единицы массы флюида в любой точке системы. Для перемещения частицы флюида в определенное положение надо выполнить работы нескольких видов. Полная сумма всех работ соответствует потенциальной эйергии элементарной массы флюида. Рассмотрим частицу флюида на определенном уровне с нулевым потенциалом (Ф=0). Тогда

vk.com/club152685050 | vk.com/id446425943
потенциал этой частицы при перемещении ее в новое положение становится равным Ф\ (рис. 2.2). Значение Ф\ можно вычис-• лить, определив сумму всех работ.
Процедуру определения Ф\ можно упростить, если для подсчета использовать следующую формулу:
Так как скорость фильтрации флюида в .пористой среде мала, получим:
Предположим, что флюид несжимаем, тогда V перестает быть функцией давления:
Таким образом, для несжимаемого флюида
Рассмотрим примеры исследования потенциала скорости течения для некоторых простых систем.
Пример 1. Безнапорное движение жидкости вниз. Заметим, что на рис. 2.3 направление потока 5 совпадает с направлением уменьшения координаты z. Тогда, используя уравнение (2.11),
При этом потенциал Ф также должен уменьшаться в направлении движения потока флюидов. Таким образом, учтя геометрию системы, можно прийти к рис. 2.4. Если направление движения потока 5 совпадает с координатой z, тогда
Если же направление s противоположно направлению координаты z, то

vk.com/club152685050 | vk.com/id446425943
Это уравнение можно преобразовать для определения проницаемостей:
Пример 2. Движение жидкости вниз под напором (рис. 2.5).
Потенциал в точках z = L и z = 0 уже был определен с помощью уравнения (2.11):