- •ПРЕДИСЛОВИЕ
- •УКАЗАНИЯ ЧИТАТЕЛЯМ
- •1. ЭРА МОДЕЛИРОВАНИЯ
- •1.1. ВВЕДЕНИЕ
- •1.1.1.Необходимость моделирования
- •1.1.2.Типы моделей
- •1.1.3.Моделирование пласта
- •1.2. РАЗВИТИЕ МОДЕЛИРОВАНИЯ
- •1.2.1.Уравнение материального баланса
- •1.2.2.Аналоговые резистивно-емкостные сетки
- •1.2.3.Электролитические модели
- •1.2.4.Потенциометрические модели
- •1.2.5.Численные модели
- •1.3. ЦЕЛЬ МОДЕЛИРОВАНИЯ ПЛАСТОВ
- •1.3.1.Проектирование подземных хранилищ
- •1.3.2.Моделирование.скважин
- •1.4. ПРЕИМУЩЕСТВА МОДЕЛИРОВАНИЯ
- •2. ПОНЯТИЯ ПОДЗЕМНОЙ ГИДРОДИНАМИКИ В МОДЕЛИРОВАНИИ
- •2.1. ВВЕДЕНИЕ
- •2.1.1.Закон Дарси. Понятие проницаемости
- •2.1.2.Потенциал скорости течения
- •2.1.3.Течение реального газа. Потенциал скорости реального газа
- •2.1.4.Стационарное и нестационарное течения
- •2.2. ТИПЫ ФЛЮИДОВ [4]
- •2.3. ХАРАКТЕР ТЕЧЕНИЯ ФЛЮИДОВ В ПОРИСТОЙ СРЕДЕ
- •2.3.1.Относительная проницаемость
- •2.3.1.Относительная проницаемость породы для вытесняющей фазы
- •3. СОСТАВЛЕНИЕ УРАВНЕНИЙ ДЛЯ МОДЕЛИРОВАНИЯ ПЛАСТА
- •3.1. ВВЕДЕНИЕ
- •3.2. СОСТАВЛЕНИЕ УРАВНЕНИЙ [1—5]
- •3.2.1.Порядок составления уравнений
- •3.2.2.фильтрация однофазного флюида
- •3.3. ОСНОВНЫЕ УРАВНЕНИЯ ФИЛЬТРАЦИИ МНОГОФАЗНОГО ФЛЮИДА [2]
- •3.3.1.Вывод уравнения фильтрации трехфазного флюида для радиальной схемы пласта
- •3.3.2.Вывод уравнения фильтрации многофазного флюида для одномерной схемы пласта
- •3.4. МНОГОКОМПОНЕНТНЫЕ СИСТЕМЫ [8], [9]
- •ВВЕДЕНИЕ
- •1. ОБОРУДОВАНИЕ ОБЩЕГО НАЗНАЧЕНИЯ
- •1.2. Оборудование ствола скважины, законченной бурением
- •1.3. Трубы
- •1.3.2.Трубы обсадные
- •1.3.3.Бурильные трубы
- •1.3.4.Трубы для нефтепромысловых коммуникаций
- •1.4. Скважинные уплотнители (пакеры)
- •2. ОБОРУДОВАНИЕ ФОНТАННЫХ СКВАЖИН
- •2.1. Наземное оборудование
- •2.2. Подземное оборудование фонтанных скважин
- •3. ШТАНГОВЫЕ НАСОСНЫЕ УСТАНОВКИ (ШСНУ)
- •3.1. Станки-качалки
- •3.2. Устьевое оборудование
- •3.3. Штанги насосные (ШН)
- •3.4. Штанговые скважинные насосы ШСН
- •3.5. Производительность насоса
- •3.6. Правила безопасности при эксплуатации скважин штанговыми насосами
- •4. БЕСШТАНГОВЫЕ СКВАЖИННЫЕ НАСОСНЫЕ УСТАНОВКИ
- •4.1. Установки погружных электроцентробежных насосов (УЭЦН)
- •4.2. Установки погружных винтовых электронасосов
- •4.4. Арматура устьевая
- •4.5. Комплекс оборудования типа КОС и КОС1
- •4.6. Установки гидропоршневых насосов для добычи нефти (УГН)
- •4.7. Струйные насосы
- •5. ОБОРУДОВАНИЕ ГАЗЛИФТНЫХ СКВАЖИН
- •5.1. Газлифтная установка ЛН
- •7. ВИНТОВЫЕ ПОГРУЖНЫЕ НАСОСЫ С ПРИВОДОМ НА УСТЬЕ СКВАЖИНЫ
- •ВВЕДЕНИЕ
- •I. ОСНОВНЫЕ ПОЛОЖЕНИЯ «КЛАССИФИКАЦИИ ЗАПАСОВ МЕСТОРОЖДЕНИИ, ПЕРСПЕКТИВНЫХ И ПРОГНОЗНЫХ РЕСУРСОВ НЕФТИ И ГОРЮЧИХ ГАЗОВ»
- •1.1 СУЩНОСТЬ КЛАССИФИКАЦИИ ЗАПАСОВ И РЕСУРСОВ
- •1.2. КОМПЛЕКСНЫЙ ПОДХОД К ИЗУЧЕНИЮ НЕФТЯНЫХ И ГАЗОВЫХ МЕСТОРОЖДЕНИИ
- •1. 3. ЗАЛЕЖИ НЕФТИ И ГАЗА И ИХ ОСНОВНЫЕ КЛАССИФИКАЦИОННЫЕ ПРИЗНАКИ И ПАРАМЕТРЫ
- •1.3.1 Флюиды
- •1.3.1.1. Нефть
- •1.3.1.2. Газы
- •1.3.1.3. Конденсат
- •1.4. ПРИРОДНЫЕ РЕЗЕРВУАРЫ
- •1.5. УСЛОВИЯ ЗАЛЕГАНИЯ ФЛЮИДОВ В ЗАЛЕЖИ
- •1.5.1. Основные типы залежей
- •1.5.2. Классификация залежей по фазовому состоянию УВ
- •1.5.3. Основные особенности, характеризующие условия разработки залежи
- •1.6. МЕСТОРОЖДЕНИЯ НЕФТИ И ГАЗА И ИХ ОСНОВНЫЕ КЛАССИФИКАЦИОННЫЕ ПРИЗНАКИ
- •1.8. КОМПЛЕКСНОЕ ИЗУЧЕНИЕ НЕФТЕГАЗОНОСНЫХ ОБЪЕКТОВ НА РАЗЛИЧНЫХ ЭТАПАХ И СТАДИЯХ ГЕОЛОГОРАЗВЕДОЧНЫХ РАБОТ И РАЗРАБОТКИ
- •1.8.1. Региональный этап
- •1.8.1.1. Стадия прогнозирования нефтегазоносности
- •1.8.1.2. Стадия оценки зон нефтегазонакопления
- •1.8.2 Поисковый этап
- •1.8.2.1. Стадия выявления и подготовки объектов для поискового бурения
- •1.8.2.2. Стадия поиска месторождений (залежей)
- •1.8.3. Разведочный этап
- •1.8.3.1. Стадия оценки месторождений (залежей)
- •1.8.3.2. Стадия подготовки месторождений (залежей) к разработке
- •1.9. КАТЕГОРИИ ЗАПАСОВ, ПЕРСПЕКТИВНЫХ И ПРОГНОЗНЫХ РЕСУРСОВ НЕФТИ И ГАЗА И ИХ НАЗНАЧЕНИЕ
- •1.11. ПОДГОТОВЛЕННОСТЬ РАЗВЕДАННЫХ МЕСТОРОЖДЕНИЙ (ЗАЛЕЖЕЙ) НЕФТИ И ГАЗА ДЛЯ ПРОМЫШЛЕННОГО ОСВОЕНИЯ
- •2. ВЫДЕЛЕНИЕ ОЦЕНОЧНЫХ И ПОДСЧЕТНЫХ ОБЪЕКТОВ РЕСУРСОВ И ЗАПАСОВ НЕФТИ И ГАЗА
- •2.1 ВЗАИМОСВЯЗЬ КАТЕГОРИИ ЗАПАСОВ И РЕСУРСОВ С ЭТАПАМИ И СТАДИЯМИ ГЕОЛОГОРАЗВЕДОЧНЫХ РАБОТИ РАЗРАБОТКИ ЗАЛЕЖЕЙ
- •2. 2 ВЫДЕЛЕНИЕ ОЦЕНОЧНЫХ ОБЪЕКТОВ ПРОГНОЗНЫХ РЕСУРСОВ
- •2. 3. ВЫДЕЛЕНИЕ ПОДСЧЕТНЫХ ОБЪЕКТОВ ПЕРСПЕКТИВНЫХ РЕСУРСОВ
- •2.4. ПОДСЧЕТНЫЕ ОБЪЕКТЫ ЗАПАСОВ НЕФТИ И ГАЗА
- •3. СУММАРНЫЕ РЕСУРСЫ НЕФТИ, ГАЗА И КОНДЕНСАТА
- •4. ОБЪЕМНЫЙ МЕТОД ПОДСЧЕТА НАЧАЛЬНЫХ БАЛАНСОВЫХ ЗАПАСОВ НЕФТИ И СВОБОДНОГО ГАЗА
- •4. 1. СУЩНОСТЬ ОБЪЕМНОГО МЕТОДА
- •4. 2. ОСНОВНЫЕ ЭТАПЫ ПОДСЧЕТА ЗАПАСОВ НЕФТИ И СВОБОДНОГО ГАЗА ОБЪЕМНЫМ МЕТОДОМ
- •4.3. ПОДСЧЕТ ЗАПАСОВ НЕФТИ И СВОБОДНОГО ГАЗА НА РАЗНЫХ СТАДИЯХ ИЗУЧЕННОСТИ ЗАЛЕЖЕЙ В КОЛЛЕКТОРАХ ПОРОВОГО ТИПА
- •4.3.2. ПОДСЧЕТ ЗАПАСОВ НА СТАДИИ ОЦЕНКИ МЕСТОРОЖДЕНИЙ (ЗАЛЕЖЕЙ)
- •4.3.3. ПОДСЧЕТ ЗАПАСОВ ПО ЗАВЕРШЕНИЮ РАЗВЕДОЧНОГО ЭТАПА
- •4.3.4. ОСОБЕННОСТИ ПОДСЧЕТА ЗАПАСОВ НА РАЗРАБАТЫВАЮЩИХСЯ ЗАЛЕЖАХ
- •5. МЕТОДЫ ОПРЕДЕЛЕНИЯ НАЧАЛЬНЫХ ИЗВЛЕКАЕМЫХ ЗАПАСОВ НЕФТИ И ГАЗА
- •5.1. МЕТОДЫ ОПРЕДЕЛЕНИЯ ПРОЕКТНЫХ КОЭФФИЦИЕНТОВ ИЗВЛЕЧЕНИЯ НЕФТИ ПРИ ВОДОНАПОРНОМ РЕЖИМЕ
- •5.2. ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ИЗВЛЕЧЕНИЯ НЕФТИ ПРИ ПОДСЧЕТЕ ЗАПАСОВ ЗАЛЕЖЕЙ, ВВОДИМЫХ В РАЗРАБОТКУ, И ПРИ ПЕРЕСЧЕТЕ ЗАПАСОВ РАЗРАБАТЫВАЕМЫХ ЗАЛЕЖЕЙ
- •5.3. ПОНЯТИЕ О КОЭФФИЦИЕНТЕ ИЗВЛЕЧЕНИЯ ГАЗА
- •6. ПОДСЧЕТ ЗАПАСОВ РАСТВОРЕННОГО В НЕФТИ ГАЗА И ЕГО КОМПОНЕНТОВ
- •6.1.ПОДСЧЕТ ЗАПАСОВ ГАЗА, РАСТВОРЕННОГО В НЕФТИ
- •6.2. ПОДСЧЕТ БАЛАНСОВЫХ ЗАПАСОВ ЭТАНА, ПРОПАНА, БУТАНОВ. СЕРОВОДОРОДА И ДРУГИХ ПОЛЕЗНЫХ КОМПОНЕНТОВ
- •7.ПЕРЕВОД ЗАПАСОВ НЕФТИ И ГАЗА В БОЛЕЕ ВЫСОКИЕ КАТЕГОРИИ И ПЕРЕСЧЕТ (ПОВТОРНЫЙ ПОДСЧЕТ) ЗАПАСОВ
- •7.1. ПЕРЕВОД ЗАПАСОВ В БОЛЕЕ ВЫСОКИЕ КАТЕГОРИИ
- •Модуль
- •Продуктивность скважин.
- •Введение
- •Этапы добычи на нефтяном месторождения
- •Как мы способствуем повреждению пласта?
- •Как преодолеть повреждение пласта?
- •Другие факторы, влияющие на продуктивность скважины
- •ВВЕДЕНИЕ
- •1. КОЛЛЕКТОРСКИЕ СВОЙСТВА ГОРНЫХ ПОРОД
- •1.1. ТИПЫ ПОРОД-КОЛЛЕКТОРОВ
- •1.2. ПОРИСТОСТЬ
- •1.2.1. Виды пористости
- •1.3. ПРОНИЦАЕМОСТЬ
- •1.3.1. Линейная фильтрация нефти и газа в пористой среде
- •1.3.2. Радиальная фильтрация нефти и газа в пористой среде
- •1.3.3. Оценка проницаемости пласта, состоящего из нескольких пропластков различной проницаемости
- •1.3.4. Классификация проницаемых пород
- •1.3.5. Зависимость проницаемости от пористости
- •1.3.6. Виды проницаемости
- •2. МЕХАНИЧЕСКИЕ И ТЕПЛОВЫЕ СВОЙСТВА ПОРОД
- •2.1. МЕХАНИЧЕСКИЕ СВОЙСТВА ГОРНЫХ ПОРОД
- •2.2. ТЕПЛОВЫЕ СВОЙСТВА ГОРНЫХ ПОРОД
- •3. СОСТАВ И ФИЗИЧЕСКИЕ СВОЙСТВА ГАЗА, НЕФТИ И ПЛАСТОВЫХ ВОД
- •3.1.1. Состав природных газов
- •3.1.2. Физико-химические свойства углеводородных газов
- •3.1.3. Растворимость газов в нефти и воде
- •3.2. СОСТАВ И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ПЛАСТОВОЙ ВОДЫ
- •3.2.1. Физико-химические свойства пластовых вод
- •3.3. СОСТАВ И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА НЕФТЕЙ
- •3.3.1. Физико-химические свойства нефти
- •4. ФАЗОВЫЕ СОСТОЯНИЯ УГЛЕВОДОРОДНЫХ СИСТЕМ
- •4.1. СХЕМА ФАЗОВЫХ ПРЕВРАЩЕНИЙ ОДНОКОМПОНЕНТНЫХ СИСТЕМ
- •4.2. ФАЗОВЫЕ ПЕРЕХОДЫ В НЕФТИ, ВОДЕ И ГАЗЕ
- •5. ПОВЕРХНОСТНО-МОЛЕКУЛЯРНЫЕ СВОЙСТВА СИСТЕМЫ ПЛАСТ-ВОДА
- •6. ФИЗИЧЕСКИЕ ОСНОВЫ ВЫТЕСНЕНИЯ НЕФТИ, КОНДЕНСАТА И ГАЗА ИЗ ПОРИСТОЙ СРЕДЫ
- •6.1. ИСТОЧНИКИ ПЛАСТОВОЙ ЭНЕРГИИ
- •6.2. СИЛЫ, ДЕЙСТВУЮЩИЕ В ЗАЛЕЖИ
- •6.3. ПОВЕРХНОСТНЫЕ ЯВЛЕНИЯ ПРИ ФИЛЬТРАЦИИ ПЛАСТОВЫХ ЖИДКОСТЕЙ И ПРИЧИНЫ НАРУШЕНИЯ ЗАКОНА ДАРСИ
- •6.4. ОБЩАЯ СХЕМА ВЫТЕСНЕНИЯ ИЗ ПЛАСТА НЕФТИ ВОДОЙ И ГАЗОМ
- •6.5. НЕФТЕОТДАЧА ПЛАСТОВ ПРИ РАЗЛИЧНЫХ УСЛОВИЯХ ДРЕНИРОВАНИЯ ЗАЛЕЖИ
- •6.6. РОЛЬ КАПИЛЛЯРНЫХ ПРОЦЕССОВ ПРИ ВЫТЕСНЕНИИ НЕФТИ ВОДОЙ ИЗ ПОРИСТЫХ СРЕД
- •6.7. ЗАВИСИМОСТЬ НЕФТЕОТДАЧИ ОТ СКОРОСТИ ВЫТЕСНЕНИЯ НЕФТИ ВОДОЙ
- •ЛИТЕРАТУРА
- •ВВЕДЕНИЕ
- •1. ПРАВОВЫЕ И ОРГАНИЗАЦИОННЫЕ ОСНОВЫ ОХРАНЫ ОКРУЖАЮЩЕЙ ПРИРОДНОЙ СРЕДЫ
- •1.1.ПРАВОВАЯ ОСНОВА ОХРАНЫ ОКРУЖАЮЩЕЙ ПРИРОДНОЙ СРЕДЫ
- •1.1.1.Концепция охраны окружающей природной среды
- •1.1.2.Правовые аспекты охраны окружающей природной среды
- •1.1.3.Эколого-правовая ответственность
- •1.1.4.Возмещение вреда природной среде
- •2.1.Принципы управления охраной природы в нефтяной и газовой промышленности
- •2.2.Совершенствование системы информационного обеспечения
- •2.3.Совершенствование системы экономического стимулирования природоохранной деятельности нефтегазодобывающих предприятий
- •2.4. Критерии качества среды и нормативы воздействия
- •3. ЭКОЛОГО - ЭКОНОМИЧЕСКАЯ ОПТИМИЗАЦИЯ ПРИРОДОПОЛЬЗОВАНИЯ
- •3.1. Организационные подходы и методы минимизации воздействия производств на окружающую среду
- •3.2. Технологические и технические подходы и методы минимизации воздействия производств на окружающую среду
- •3.3.Экологическая характеристика нефтегазодобывающего производства
- •4. ИСТОЧНИКИ И МАСШТАБЫ ТЕХНОГЕННОГО ЗАГРЯЗНЕНИЯ В НЕФТЯНОЙ ПРОМЫШЛЕННОСТИ
- •5. СТРОИТЕЛЬСТВО СКВАЖИН
- •5.1.Источники загрязнения
- •Источники загрязнения
- •5.2.Характер загрязнения природной среды
- •5.3.Влияние отходов на водные объекты
- •5.4.Влияние отходов на почву
- •6. СТРОИТЕЛЬСТВО
- •7. ИНТЕНСИФИКАЦИЯ ДОБЫЧИ НЕФТИ
- •8. ОБЪЕКТЫ СБОРА И ПОДГОТОВКИ НЕФТИ
- •8.1. Схемы водоснабжения системы заводнения нефтяных месторождений
- •8.2. ЭЛЕМЕНТЫ ФАКЕЛЬНОЙ СИСТЕМЫ
- •8.2.1. КЛАССИФИКАЦИЯ ФАКЕЛЬНЫХ УСТАНОВОК
- •Рис.2. Условия стабильного горения
- •L – длина пламени, d – диаметр факельной трубы
- •8.2.2. РАСЧЕТ ДИАМЕТРА ФАКЕЛЬНОЙ ТРУБЫ
- •8.2.3. РАСЧЕТ ВЫСОТЫ ФАКЕЛЬНОЙ ТРУБЫ
- •8.2.4. ШУМ ПРИ ФАКЕЛЬНОМ СЖИГАНИИ ГАЗА
- •8.2.5. АВАРИИ НА ФАКЕЛЬНЫХ УСТАНОВКАХ
- •8.2.6. ТЕПЛОВОЕ ИЗЛУЧЕНИЕ
- •9. ВЗАИМОВЛИЯНИЕ СИСТЕМ ТРУБОПРОВОДНОГО ТРАНСПОРТА И ПРИРОДНОЙ СРЕДЫ
- •11. ПРИРОДООХРАННЫЕ ТЕХНОЛОГИИ И ОСНОВНЫЕ ТРЕБОВАНИЯ К НИМ
- •12. ОХРАНА НЕДР И ОКРУЖАЮЩЕЙ СРЕДЫ
- •12.1. ОХРАНА ВОДНЫХ РЕСУРСОВ
- •12.1.1 Поверхностные воды
- •12.1.2 Подземные воды
- •12.2. Утилизация вод нефтяных месторождений
- •12.3. ОХРАНА ПРИРОДНЫХ ВОД
- •12.4. ВОДОПОЛЬЗОВАНИЕ И ВОДООТВЕДЕНИЕ НА ОБЪЕКТАХ НЕФТЕГАЗОВОГО КОМПЛЕКСА
- •12.5. ОЦЕНКА ЗАГРЯЗНЕНИЯ ВОДНОЙ СРЕДЫ
- •12.5.1. Критерии, отражающие воздействие отдельных факторов
- •12.5.2. Экологические интегральные критерии оценки качества вод
- •12.6. РАСЧЕТ ПРЕДЕЛЬНО ДОПУСТИМОГО СБРОСА СТОЧНЫХ ВОД
- •12.7. ТЕХНОЛОГИИ ОЧИСТКИ СТОЧНЫХ ВОД
- •12.7.2. Технология путевого сброса воды
- •13. СПОСОБЫ БОРЬБЫ С НЕФТЕЗАГРЯЗНЕНИЕМ ВОДНЫХ ОБЪЕКТОВ
- •13.1. Механические методы удаления нефти
- •13.3. Химические методы удаления разливов нефти
- •13.4. Микробиологическое разложение нефти
- •13.5. Технология сбора плавающей нефти с водных поверхностей
- •14. ОХРАНА ЗЕМЕЛЬНЫХ РЕСУРСОВ
- •14.1. ОХРАНА АТМОСФЕРЫ
- •14.1.1.Нефтяной газ как источник загрязнения атмосферы
- •14.2. ОСНОВНЫЕ НАПРАВЛЕНИЯ ОХРАНЫ НЕДР НЕФТЯНЫХ МЕСТОРОЖДЕНИЙ
- •14.3. ОХРАНА НЕДР И ОКРУЖАЮЩЕЙ СРЕДЫ В ПРОЦЕССЕ РАЗБУРИВАНИЯ НЕФТЯНОГО МЕСТОРОЖДЕНИЯ
- •14.4. ОХРАНА НЕДР И ОКРУЖАЮЩЕЙ СРЕДЫ ПРИ РАЗРАБОТКЕ НЕФТЯНЫХ МЕСТОРОЖДЕНИЙ
- •15. ЭКОЛОГИЧЕСКИЕ АСПЕКТЫ МЕТОДОВ ИНТЕНСИФИКАЦИИ НЕФТЕОТДАЧИ ПЛАСТОВ
- •15.1. ЗАВОДНЕНИЕ
- •15.1.1. ЗАВОДНЕНИЕ С ИСПОЛЬЗОВАНИЕМ ХИМРЕАГЕНТОВ
- •15.1.2. ЗАВОДНЕНИЕ С ПРИМЕНЕНИЕМ ПОЛИМЕРНЫХ РАСТВОРОВ
- •15.1.3. ЗАКАЧКА ГОРЯЧЕЙ ВОДЫ И ПАРА
- •15.2. МЕТОД ВЛАЖНОГО И СВЕРХВЛАЖНОГО ВНУТРИПЛАСТОВОГО ГОРЕНИЯ
- •16. ЭКОЛОГИЧЕСКИЕ АСПЕКТЫ МЕТОДОВ РАЗРАБОТКИ МЕСТОРОЖДЕНИЙ
- •17. МОНИТОРИНГ НЕФТЯНОГО ЗАГРЯЗНЕНИЯ
- •17.1. СИСТЕМА НАБЛЮДЕНИЯ ЗА НЕФТЯНЫМ ЗАГРЯЗНЕНИЕМ
- •17.2. КОНТРОЛЬ ЗА ЗАГРЯЗНЕНИЕМ ОКРУЖАЮЩЕЙ СРЕДЫ В ЗОНЕ ДЕЯТЕЛЬНОСТИ НЕФТЕГАЗОДОБЫВАЮЩИХ УПРАВЛЕНИЙ
vk.com/club152685050 | vk.com/id446425943
1.2.1.Уравнение материального баланса
В 1936 г. Шильтуис вывел уравнение сохранения массы для продуктивного пласта. При выводе
этого уравнения пласт рассматривался как однородный с постоянными свойствами породы и
.флюида. Баланс составлялся путем учета всех масс флюида, втекающего и вытекающего за данный период времени. Уравнение материального баланса иногда называют моделью нулевой размерности, так как внутри системы порода— флюид не происходит изменений параметров ни в одном направлении. Насыщенности и давления распределены равномерно по
пласту, и любые изменения давлений мгновенно .передаются всем его точкам. Уравнение материального баланса (рис. 1.3) приведено ниже:
Здесь: Nр - количество добытой нефти; N - количество нефти, первоначально заключенной в пласте; Wр - суммарная добыча воды; We - суммарный объем поступающей в продуктивный пласт краевой воды; Wi - количество закачанной воды; Вt - коэффициент пластового объема нефти с растворенным газом; Вti - коэффициент пластового объема нефти при начальном пластовом давлении; Вg - коэффициент пластового объема газа; Вgi - коэффициент пластового объема газа при начальном пластовом давлении; m - отношение объема начальной газовой шапки к начальному объему нефти в пласте; Rр - суммарный газовый фактор; Rsi - начальная растворимость газа; Sw - текущая водонасыщенность пористой среды; Swi - начальная водонасыщенность пористой среды; Сf - сжимаемость породы; Сw - сжимаемость воды; р - депрессия давления в пласте; Gi - суммарное количество нагнетаемого газа.
При различных алгебраических преобразованиях с помощью этого уравнения можно определить любой из следующих параметров:
1)запасы нефти;
2)количество втекающей в пласт воды;
3)размеры газовой шапки и запасы газа;
4)добычу нефти.
Уравнение материального баланса решалось либо графически, либо численно. Позднее это уравнение Оде и Гавлена записали как уравнение прямой линии.
Метод материального баланса имеет следующие недостатки:
1)он не позволяет учитывать изменения свойств флюидов и породы в пласте;
2)не рассматриваются динамические эффекты движения флюидов внутри системы.
В дальнейшем при анализе процесса разработки пластов были использованы другие методы. Рассмотрим метод, основанный на использовании резистивно-емкостных электрических сеток.
1.2.2.Аналоговые резистивно-емкостные сетки
vk.com/club152685050 | vk.com/id446425943
Аналоговые резистивно-емкостные сетки обычно называют электрическими анализаторами (электроинтеграторами), в которых для создания электрической модели нефтяного пласта применяют законы электротехники и гидравлики. Анализируя изменения электрических параметров во времени при различных воздействиях, с помощью простых переводных коэффициентов можно оценить процесс разработки пласта. Аналогия между различными системами видна из уравнений, приведенных ниже.
Фильтрация флюида в образце описывается следующим образом:
Движение электрического тока в проводнике можно определить по формулам
Соответствие .параметров, указанных в формулах, приведено в табл. 1.1. ТАБЛИЦА 1.1
Аналогия между характеристиками флюидов и понятиями,
принятыми в электротехнике
Наименование величины |
Размерность |
Наименование величины |
Размерность |
|
|
|
|
Давление р |
кгс/см2 |
Напряжение Е |
B |
Добыча/закачка q |
см3/с |
Сила тока i |
A |
Объем флюидов (запасы) |
|
Емкостъ электрическая Сe |
мкФ |
Vc |
|
|
|
Проводимость kh/μ |
Дсмּ /сП |
Электрическая |
Ом |
|
|
проводимость 1/R |
|
Истинное время процесса t |
с |
Время моделирования t |
с |
Резистивно-емкостная сетка К-С (электрическая сеточная модель) обычно представляет собой двумерную модель пласта. На рис. 1.4, 1.5 и 1.6 показаны схемы моделирования нефтеносного района [4] с помощью сетки К-С. Уравнения (1.2) и (1.3) отражают однозначную связь следующих величин:
Сопротивления сетки К вычисляют по данным о реальных проницаемостях k в соответствующих секторах месторождения. Электрические параметры (напряжение и силу тока) замеряют, при этом значения емкостей могут изменяться.
1.2.3.Электролитические модели
Электролитические модели стационарных процессов разрабатывались некоторыми исследователями, такими, как Ботсет, Виков и Маскет, с целью анализа движения фронтов флюидов в пласте. Принцип действия этих моделей основан на аналогии между законом Ома для электрического тока в проводнике и законом Дарси для пористой среды. Если источники и стоки при фильтрации флюида и границы прристой среды определены с
Рис. 1.4. Схема моделирования |
Рис. 1.5. Схема моделирования |
водоносного |
|
резервуара Вудбайн |
Восточно-Тексасского месторождения |
|
|
vk.com/club152685050 | vk.com/id446425943
достаточной степенью точности, то для исследования движения флюидов в стационарных условиях обычно применяют модель, изготовленную из промокательной бумаги или пластин желатина. При этом обеспечивается геометрическое подобие модели, а масштаб по вертикали увеличивается. Напряжение прикладывается в точках расположения скважин (в данном случае к медным электродам), и продвижение фронта флюида прослеживается по движению окрашенных ионов от отрицательного электрода к положительному. Среда (промокательная бумага или пластины желатина) предварительно пропитывается бесцветным раствором нитрата цинка. Ионы меди движутся под прямым углом к эквипотенциальным линиям поля. Рис. 1.7 иллюстрирует характер вытеснения флюида. Рис. 1.6. Схема резистивно-емкостной
сетки для Восточно-Тексасского месторождения
1.2.4.Потенциометрические модели
Потенциометрическая модель - это модель стационарного течения флюида, представляющая собой сосуд, повторяющий форму границ пласта. Глубина этого сосуда пропорциональна значениям проницаемости и толщины изучаемого объекта. Скважины моделируются медными электродами, расположенными в пространстве, заполненном электролитом, например хлористым калием. Дебиты эксплуатационных и нагнетательных скважин во избежание электролиза моделируются заданными значениями переменных токов. Потенциометрические модели предназначены для определения стационарного распределения потенциалов. Так как это распределение аналогично распределению давлений в пласте, то линии тока могут быть проведены путем построения семейства точек под прямым углом к линиям равных потенциалов.
vk.com/club152685050 | vk.com/id446425943
На практике линии равных потенциалов определяют с помощью
Рис. 1.7. Электролитические модели: 1 - экплуатационная скважина; 2 - нагнетательная скважина подвижного зонда, управляемого сервомеханизмом. Если будет установлено положение заданной линии равных потенциалов, направление вектора линии тока определяется положением перпендикуляра, которое непрерывно фиксируется под прямым углом к положению зонда. Таким образом, к концу измерений одновременно определяются положения линий равных потенциалов и линий токов.
Рис. 1.8. Потенциометрическая модель:
1 - нагнетательная скважина: 2 - эквипотенциальная поверхность; 3 - эксплуатационная скважина; 4 - линия тока; 5 - положение фронта флюида
После получения линий тока можно определить положение фронта заводнения путем вычисления расстояния, пройденного закачиваемой водой вдоль каждой линии тока, выходящей нз нагнетательной скважины. Положение фронта заводнения на определенный момент времени показано на рис. 1.8.
Всем описанным выше моделям свойственны некоторые недостатки. Основная .проблема заключается в том, что для каждого пласта создается уникальная модель. Это обходится слишком дорого, причем нельзя изменять свойства моделей в процессе ее исследования. Перестройка законченной модели .влечет за собой физическую переделку схем или систем. Кроме того, такие погрешности компонентов системы, как утечки конденсаторов, погрешности измерений и т. д., связанные с несовершенством оборудования, сильно влияют на результаты решения. Наконец, электрические сеточные модели могут быть таких значительных размеров, что занимают иногда целые залы, так что специалист должен в прямом смысле «проникать» в моделя для настройки резисторов и емкостей. Работа с моделями таких размеров бывает очень сложной.
1.2.5.Численные модели
Для решения математических уравнении, которые описывают поведение флюидов в пористой среде, применяют численные модели и цифровые вычислительные машины. При этом обычно используется метод сеток. Численные модели были разработаны в середине
