
- •ПРЕДИСЛОВИЕ
- •УКАЗАНИЯ ЧИТАТЕЛЯМ
- •1. ЭРА МОДЕЛИРОВАНИЯ
- •1.1. ВВЕДЕНИЕ
- •1.1.1.Необходимость моделирования
- •1.1.2.Типы моделей
- •1.1.3.Моделирование пласта
- •1.2. РАЗВИТИЕ МОДЕЛИРОВАНИЯ
- •1.2.1.Уравнение материального баланса
- •1.2.2.Аналоговые резистивно-емкостные сетки
- •1.2.3.Электролитические модели
- •1.2.4.Потенциометрические модели
- •1.2.5.Численные модели
- •1.3. ЦЕЛЬ МОДЕЛИРОВАНИЯ ПЛАСТОВ
- •1.3.1.Проектирование подземных хранилищ
- •1.3.2.Моделирование.скважин
- •1.4. ПРЕИМУЩЕСТВА МОДЕЛИРОВАНИЯ
- •2. ПОНЯТИЯ ПОДЗЕМНОЙ ГИДРОДИНАМИКИ В МОДЕЛИРОВАНИИ
- •2.1. ВВЕДЕНИЕ
- •2.1.1.Закон Дарси. Понятие проницаемости
- •2.1.2.Потенциал скорости течения
- •2.1.3.Течение реального газа. Потенциал скорости реального газа
- •2.1.4.Стационарное и нестационарное течения
- •2.2. ТИПЫ ФЛЮИДОВ [4]
- •2.3. ХАРАКТЕР ТЕЧЕНИЯ ФЛЮИДОВ В ПОРИСТОЙ СРЕДЕ
- •2.3.1.Относительная проницаемость
- •2.3.1.Относительная проницаемость породы для вытесняющей фазы
- •3. СОСТАВЛЕНИЕ УРАВНЕНИЙ ДЛЯ МОДЕЛИРОВАНИЯ ПЛАСТА
- •3.1. ВВЕДЕНИЕ
- •3.2. СОСТАВЛЕНИЕ УРАВНЕНИЙ [1—5]
- •3.2.1.Порядок составления уравнений
- •3.2.2.фильтрация однофазного флюида
- •3.3. ОСНОВНЫЕ УРАВНЕНИЯ ФИЛЬТРАЦИИ МНОГОФАЗНОГО ФЛЮИДА [2]
- •3.3.1.Вывод уравнения фильтрации трехфазного флюида для радиальной схемы пласта
- •3.3.2.Вывод уравнения фильтрации многофазного флюида для одномерной схемы пласта
- •3.4. МНОГОКОМПОНЕНТНЫЕ СИСТЕМЫ [8], [9]
- •ВВЕДЕНИЕ
- •1. ОБОРУДОВАНИЕ ОБЩЕГО НАЗНАЧЕНИЯ
- •1.2. Оборудование ствола скважины, законченной бурением
- •1.3. Трубы
- •1.3.2.Трубы обсадные
- •1.3.3.Бурильные трубы
- •1.3.4.Трубы для нефтепромысловых коммуникаций
- •1.4. Скважинные уплотнители (пакеры)
- •2. ОБОРУДОВАНИЕ ФОНТАННЫХ СКВАЖИН
- •2.1. Наземное оборудование
- •2.2. Подземное оборудование фонтанных скважин
- •3. ШТАНГОВЫЕ НАСОСНЫЕ УСТАНОВКИ (ШСНУ)
- •3.1. Станки-качалки
- •3.2. Устьевое оборудование
- •3.3. Штанги насосные (ШН)
- •3.4. Штанговые скважинные насосы ШСН
- •3.5. Производительность насоса
- •3.6. Правила безопасности при эксплуатации скважин штанговыми насосами
- •4. БЕСШТАНГОВЫЕ СКВАЖИННЫЕ НАСОСНЫЕ УСТАНОВКИ
- •4.1. Установки погружных электроцентробежных насосов (УЭЦН)
- •4.2. Установки погружных винтовых электронасосов
- •4.4. Арматура устьевая
- •4.5. Комплекс оборудования типа КОС и КОС1
- •4.6. Установки гидропоршневых насосов для добычи нефти (УГН)
- •4.7. Струйные насосы
- •5. ОБОРУДОВАНИЕ ГАЗЛИФТНЫХ СКВАЖИН
- •5.1. Газлифтная установка ЛН
- •7. ВИНТОВЫЕ ПОГРУЖНЫЕ НАСОСЫ С ПРИВОДОМ НА УСТЬЕ СКВАЖИНЫ
- •ВВЕДЕНИЕ
- •I. ОСНОВНЫЕ ПОЛОЖЕНИЯ «КЛАССИФИКАЦИИ ЗАПАСОВ МЕСТОРОЖДЕНИИ, ПЕРСПЕКТИВНЫХ И ПРОГНОЗНЫХ РЕСУРСОВ НЕФТИ И ГОРЮЧИХ ГАЗОВ»
- •1.1 СУЩНОСТЬ КЛАССИФИКАЦИИ ЗАПАСОВ И РЕСУРСОВ
- •1.2. КОМПЛЕКСНЫЙ ПОДХОД К ИЗУЧЕНИЮ НЕФТЯНЫХ И ГАЗОВЫХ МЕСТОРОЖДЕНИИ
- •1. 3. ЗАЛЕЖИ НЕФТИ И ГАЗА И ИХ ОСНОВНЫЕ КЛАССИФИКАЦИОННЫЕ ПРИЗНАКИ И ПАРАМЕТРЫ
- •1.3.1 Флюиды
- •1.3.1.1. Нефть
- •1.3.1.2. Газы
- •1.3.1.3. Конденсат
- •1.4. ПРИРОДНЫЕ РЕЗЕРВУАРЫ
- •1.5. УСЛОВИЯ ЗАЛЕГАНИЯ ФЛЮИДОВ В ЗАЛЕЖИ
- •1.5.1. Основные типы залежей
- •1.5.2. Классификация залежей по фазовому состоянию УВ
- •1.5.3. Основные особенности, характеризующие условия разработки залежи
- •1.6. МЕСТОРОЖДЕНИЯ НЕФТИ И ГАЗА И ИХ ОСНОВНЫЕ КЛАССИФИКАЦИОННЫЕ ПРИЗНАКИ
- •1.8. КОМПЛЕКСНОЕ ИЗУЧЕНИЕ НЕФТЕГАЗОНОСНЫХ ОБЪЕКТОВ НА РАЗЛИЧНЫХ ЭТАПАХ И СТАДИЯХ ГЕОЛОГОРАЗВЕДОЧНЫХ РАБОТ И РАЗРАБОТКИ
- •1.8.1. Региональный этап
- •1.8.1.1. Стадия прогнозирования нефтегазоносности
- •1.8.1.2. Стадия оценки зон нефтегазонакопления
- •1.8.2 Поисковый этап
- •1.8.2.1. Стадия выявления и подготовки объектов для поискового бурения
- •1.8.2.2. Стадия поиска месторождений (залежей)
- •1.8.3. Разведочный этап
- •1.8.3.1. Стадия оценки месторождений (залежей)
- •1.8.3.2. Стадия подготовки месторождений (залежей) к разработке
- •1.9. КАТЕГОРИИ ЗАПАСОВ, ПЕРСПЕКТИВНЫХ И ПРОГНОЗНЫХ РЕСУРСОВ НЕФТИ И ГАЗА И ИХ НАЗНАЧЕНИЕ
- •1.11. ПОДГОТОВЛЕННОСТЬ РАЗВЕДАННЫХ МЕСТОРОЖДЕНИЙ (ЗАЛЕЖЕЙ) НЕФТИ И ГАЗА ДЛЯ ПРОМЫШЛЕННОГО ОСВОЕНИЯ
- •2. ВЫДЕЛЕНИЕ ОЦЕНОЧНЫХ И ПОДСЧЕТНЫХ ОБЪЕКТОВ РЕСУРСОВ И ЗАПАСОВ НЕФТИ И ГАЗА
- •2.1 ВЗАИМОСВЯЗЬ КАТЕГОРИИ ЗАПАСОВ И РЕСУРСОВ С ЭТАПАМИ И СТАДИЯМИ ГЕОЛОГОРАЗВЕДОЧНЫХ РАБОТИ РАЗРАБОТКИ ЗАЛЕЖЕЙ
- •2. 2 ВЫДЕЛЕНИЕ ОЦЕНОЧНЫХ ОБЪЕКТОВ ПРОГНОЗНЫХ РЕСУРСОВ
- •2. 3. ВЫДЕЛЕНИЕ ПОДСЧЕТНЫХ ОБЪЕКТОВ ПЕРСПЕКТИВНЫХ РЕСУРСОВ
- •2.4. ПОДСЧЕТНЫЕ ОБЪЕКТЫ ЗАПАСОВ НЕФТИ И ГАЗА
- •3. СУММАРНЫЕ РЕСУРСЫ НЕФТИ, ГАЗА И КОНДЕНСАТА
- •4. ОБЪЕМНЫЙ МЕТОД ПОДСЧЕТА НАЧАЛЬНЫХ БАЛАНСОВЫХ ЗАПАСОВ НЕФТИ И СВОБОДНОГО ГАЗА
- •4. 1. СУЩНОСТЬ ОБЪЕМНОГО МЕТОДА
- •4. 2. ОСНОВНЫЕ ЭТАПЫ ПОДСЧЕТА ЗАПАСОВ НЕФТИ И СВОБОДНОГО ГАЗА ОБЪЕМНЫМ МЕТОДОМ
- •4.3. ПОДСЧЕТ ЗАПАСОВ НЕФТИ И СВОБОДНОГО ГАЗА НА РАЗНЫХ СТАДИЯХ ИЗУЧЕННОСТИ ЗАЛЕЖЕЙ В КОЛЛЕКТОРАХ ПОРОВОГО ТИПА
- •4.3.2. ПОДСЧЕТ ЗАПАСОВ НА СТАДИИ ОЦЕНКИ МЕСТОРОЖДЕНИЙ (ЗАЛЕЖЕЙ)
- •4.3.3. ПОДСЧЕТ ЗАПАСОВ ПО ЗАВЕРШЕНИЮ РАЗВЕДОЧНОГО ЭТАПА
- •4.3.4. ОСОБЕННОСТИ ПОДСЧЕТА ЗАПАСОВ НА РАЗРАБАТЫВАЮЩИХСЯ ЗАЛЕЖАХ
- •5. МЕТОДЫ ОПРЕДЕЛЕНИЯ НАЧАЛЬНЫХ ИЗВЛЕКАЕМЫХ ЗАПАСОВ НЕФТИ И ГАЗА
- •5.1. МЕТОДЫ ОПРЕДЕЛЕНИЯ ПРОЕКТНЫХ КОЭФФИЦИЕНТОВ ИЗВЛЕЧЕНИЯ НЕФТИ ПРИ ВОДОНАПОРНОМ РЕЖИМЕ
- •5.2. ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ИЗВЛЕЧЕНИЯ НЕФТИ ПРИ ПОДСЧЕТЕ ЗАПАСОВ ЗАЛЕЖЕЙ, ВВОДИМЫХ В РАЗРАБОТКУ, И ПРИ ПЕРЕСЧЕТЕ ЗАПАСОВ РАЗРАБАТЫВАЕМЫХ ЗАЛЕЖЕЙ
- •5.3. ПОНЯТИЕ О КОЭФФИЦИЕНТЕ ИЗВЛЕЧЕНИЯ ГАЗА
- •6. ПОДСЧЕТ ЗАПАСОВ РАСТВОРЕННОГО В НЕФТИ ГАЗА И ЕГО КОМПОНЕНТОВ
- •6.1.ПОДСЧЕТ ЗАПАСОВ ГАЗА, РАСТВОРЕННОГО В НЕФТИ
- •6.2. ПОДСЧЕТ БАЛАНСОВЫХ ЗАПАСОВ ЭТАНА, ПРОПАНА, БУТАНОВ. СЕРОВОДОРОДА И ДРУГИХ ПОЛЕЗНЫХ КОМПОНЕНТОВ
- •7.ПЕРЕВОД ЗАПАСОВ НЕФТИ И ГАЗА В БОЛЕЕ ВЫСОКИЕ КАТЕГОРИИ И ПЕРЕСЧЕТ (ПОВТОРНЫЙ ПОДСЧЕТ) ЗАПАСОВ
- •7.1. ПЕРЕВОД ЗАПАСОВ В БОЛЕЕ ВЫСОКИЕ КАТЕГОРИИ
- •Модуль
- •Продуктивность скважин.
- •Введение
- •Этапы добычи на нефтяном месторождения
- •Как мы способствуем повреждению пласта?
- •Как преодолеть повреждение пласта?
- •Другие факторы, влияющие на продуктивность скважины
- •ВВЕДЕНИЕ
- •1. КОЛЛЕКТОРСКИЕ СВОЙСТВА ГОРНЫХ ПОРОД
- •1.1. ТИПЫ ПОРОД-КОЛЛЕКТОРОВ
- •1.2. ПОРИСТОСТЬ
- •1.2.1. Виды пористости
- •1.3. ПРОНИЦАЕМОСТЬ
- •1.3.1. Линейная фильтрация нефти и газа в пористой среде
- •1.3.2. Радиальная фильтрация нефти и газа в пористой среде
- •1.3.3. Оценка проницаемости пласта, состоящего из нескольких пропластков различной проницаемости
- •1.3.4. Классификация проницаемых пород
- •1.3.5. Зависимость проницаемости от пористости
- •1.3.6. Виды проницаемости
- •2. МЕХАНИЧЕСКИЕ И ТЕПЛОВЫЕ СВОЙСТВА ПОРОД
- •2.1. МЕХАНИЧЕСКИЕ СВОЙСТВА ГОРНЫХ ПОРОД
- •2.2. ТЕПЛОВЫЕ СВОЙСТВА ГОРНЫХ ПОРОД
- •3. СОСТАВ И ФИЗИЧЕСКИЕ СВОЙСТВА ГАЗА, НЕФТИ И ПЛАСТОВЫХ ВОД
- •3.1.1. Состав природных газов
- •3.1.2. Физико-химические свойства углеводородных газов
- •3.1.3. Растворимость газов в нефти и воде
- •3.2. СОСТАВ И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ПЛАСТОВОЙ ВОДЫ
- •3.2.1. Физико-химические свойства пластовых вод
- •3.3. СОСТАВ И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА НЕФТЕЙ
- •3.3.1. Физико-химические свойства нефти
- •4. ФАЗОВЫЕ СОСТОЯНИЯ УГЛЕВОДОРОДНЫХ СИСТЕМ
- •4.1. СХЕМА ФАЗОВЫХ ПРЕВРАЩЕНИЙ ОДНОКОМПОНЕНТНЫХ СИСТЕМ
- •4.2. ФАЗОВЫЕ ПЕРЕХОДЫ В НЕФТИ, ВОДЕ И ГАЗЕ
- •5. ПОВЕРХНОСТНО-МОЛЕКУЛЯРНЫЕ СВОЙСТВА СИСТЕМЫ ПЛАСТ-ВОДА
- •6. ФИЗИЧЕСКИЕ ОСНОВЫ ВЫТЕСНЕНИЯ НЕФТИ, КОНДЕНСАТА И ГАЗА ИЗ ПОРИСТОЙ СРЕДЫ
- •6.1. ИСТОЧНИКИ ПЛАСТОВОЙ ЭНЕРГИИ
- •6.2. СИЛЫ, ДЕЙСТВУЮЩИЕ В ЗАЛЕЖИ
- •6.3. ПОВЕРХНОСТНЫЕ ЯВЛЕНИЯ ПРИ ФИЛЬТРАЦИИ ПЛАСТОВЫХ ЖИДКОСТЕЙ И ПРИЧИНЫ НАРУШЕНИЯ ЗАКОНА ДАРСИ
- •6.4. ОБЩАЯ СХЕМА ВЫТЕСНЕНИЯ ИЗ ПЛАСТА НЕФТИ ВОДОЙ И ГАЗОМ
- •6.5. НЕФТЕОТДАЧА ПЛАСТОВ ПРИ РАЗЛИЧНЫХ УСЛОВИЯХ ДРЕНИРОВАНИЯ ЗАЛЕЖИ
- •6.6. РОЛЬ КАПИЛЛЯРНЫХ ПРОЦЕССОВ ПРИ ВЫТЕСНЕНИИ НЕФТИ ВОДОЙ ИЗ ПОРИСТЫХ СРЕД
- •6.7. ЗАВИСИМОСТЬ НЕФТЕОТДАЧИ ОТ СКОРОСТИ ВЫТЕСНЕНИЯ НЕФТИ ВОДОЙ
- •ЛИТЕРАТУРА
- •ВВЕДЕНИЕ
- •1. ПРАВОВЫЕ И ОРГАНИЗАЦИОННЫЕ ОСНОВЫ ОХРАНЫ ОКРУЖАЮЩЕЙ ПРИРОДНОЙ СРЕДЫ
- •1.1.ПРАВОВАЯ ОСНОВА ОХРАНЫ ОКРУЖАЮЩЕЙ ПРИРОДНОЙ СРЕДЫ
- •1.1.1.Концепция охраны окружающей природной среды
- •1.1.2.Правовые аспекты охраны окружающей природной среды
- •1.1.3.Эколого-правовая ответственность
- •1.1.4.Возмещение вреда природной среде
- •2.1.Принципы управления охраной природы в нефтяной и газовой промышленности
- •2.2.Совершенствование системы информационного обеспечения
- •2.3.Совершенствование системы экономического стимулирования природоохранной деятельности нефтегазодобывающих предприятий
- •2.4. Критерии качества среды и нормативы воздействия
- •3. ЭКОЛОГО - ЭКОНОМИЧЕСКАЯ ОПТИМИЗАЦИЯ ПРИРОДОПОЛЬЗОВАНИЯ
- •3.1. Организационные подходы и методы минимизации воздействия производств на окружающую среду
- •3.2. Технологические и технические подходы и методы минимизации воздействия производств на окружающую среду
- •3.3.Экологическая характеристика нефтегазодобывающего производства
- •4. ИСТОЧНИКИ И МАСШТАБЫ ТЕХНОГЕННОГО ЗАГРЯЗНЕНИЯ В НЕФТЯНОЙ ПРОМЫШЛЕННОСТИ
- •5. СТРОИТЕЛЬСТВО СКВАЖИН
- •5.1.Источники загрязнения
- •Источники загрязнения
- •5.2.Характер загрязнения природной среды
- •5.3.Влияние отходов на водные объекты
- •5.4.Влияние отходов на почву
- •6. СТРОИТЕЛЬСТВО
- •7. ИНТЕНСИФИКАЦИЯ ДОБЫЧИ НЕФТИ
- •8. ОБЪЕКТЫ СБОРА И ПОДГОТОВКИ НЕФТИ
- •8.1. Схемы водоснабжения системы заводнения нефтяных месторождений
- •8.2. ЭЛЕМЕНТЫ ФАКЕЛЬНОЙ СИСТЕМЫ
- •8.2.1. КЛАССИФИКАЦИЯ ФАКЕЛЬНЫХ УСТАНОВОК
- •Рис.2. Условия стабильного горения
- •L – длина пламени, d – диаметр факельной трубы
- •8.2.2. РАСЧЕТ ДИАМЕТРА ФАКЕЛЬНОЙ ТРУБЫ
- •8.2.3. РАСЧЕТ ВЫСОТЫ ФАКЕЛЬНОЙ ТРУБЫ
- •8.2.4. ШУМ ПРИ ФАКЕЛЬНОМ СЖИГАНИИ ГАЗА
- •8.2.5. АВАРИИ НА ФАКЕЛЬНЫХ УСТАНОВКАХ
- •8.2.6. ТЕПЛОВОЕ ИЗЛУЧЕНИЕ
- •9. ВЗАИМОВЛИЯНИЕ СИСТЕМ ТРУБОПРОВОДНОГО ТРАНСПОРТА И ПРИРОДНОЙ СРЕДЫ
- •11. ПРИРОДООХРАННЫЕ ТЕХНОЛОГИИ И ОСНОВНЫЕ ТРЕБОВАНИЯ К НИМ
- •12. ОХРАНА НЕДР И ОКРУЖАЮЩЕЙ СРЕДЫ
- •12.1. ОХРАНА ВОДНЫХ РЕСУРСОВ
- •12.1.1 Поверхностные воды
- •12.1.2 Подземные воды
- •12.2. Утилизация вод нефтяных месторождений
- •12.3. ОХРАНА ПРИРОДНЫХ ВОД
- •12.4. ВОДОПОЛЬЗОВАНИЕ И ВОДООТВЕДЕНИЕ НА ОБЪЕКТАХ НЕФТЕГАЗОВОГО КОМПЛЕКСА
- •12.5. ОЦЕНКА ЗАГРЯЗНЕНИЯ ВОДНОЙ СРЕДЫ
- •12.5.1. Критерии, отражающие воздействие отдельных факторов
- •12.5.2. Экологические интегральные критерии оценки качества вод
- •12.6. РАСЧЕТ ПРЕДЕЛЬНО ДОПУСТИМОГО СБРОСА СТОЧНЫХ ВОД
- •12.7. ТЕХНОЛОГИИ ОЧИСТКИ СТОЧНЫХ ВОД
- •12.7.2. Технология путевого сброса воды
- •13. СПОСОБЫ БОРЬБЫ С НЕФТЕЗАГРЯЗНЕНИЕМ ВОДНЫХ ОБЪЕКТОВ
- •13.1. Механические методы удаления нефти
- •13.3. Химические методы удаления разливов нефти
- •13.4. Микробиологическое разложение нефти
- •13.5. Технология сбора плавающей нефти с водных поверхностей
- •14. ОХРАНА ЗЕМЕЛЬНЫХ РЕСУРСОВ
- •14.1. ОХРАНА АТМОСФЕРЫ
- •14.1.1.Нефтяной газ как источник загрязнения атмосферы
- •14.2. ОСНОВНЫЕ НАПРАВЛЕНИЯ ОХРАНЫ НЕДР НЕФТЯНЫХ МЕСТОРОЖДЕНИЙ
- •14.3. ОХРАНА НЕДР И ОКРУЖАЮЩЕЙ СРЕДЫ В ПРОЦЕССЕ РАЗБУРИВАНИЯ НЕФТЯНОГО МЕСТОРОЖДЕНИЯ
- •14.4. ОХРАНА НЕДР И ОКРУЖАЮЩЕЙ СРЕДЫ ПРИ РАЗРАБОТКЕ НЕФТЯНЫХ МЕСТОРОЖДЕНИЙ
- •15. ЭКОЛОГИЧЕСКИЕ АСПЕКТЫ МЕТОДОВ ИНТЕНСИФИКАЦИИ НЕФТЕОТДАЧИ ПЛАСТОВ
- •15.1. ЗАВОДНЕНИЕ
- •15.1.1. ЗАВОДНЕНИЕ С ИСПОЛЬЗОВАНИЕМ ХИМРЕАГЕНТОВ
- •15.1.2. ЗАВОДНЕНИЕ С ПРИМЕНЕНИЕМ ПОЛИМЕРНЫХ РАСТВОРОВ
- •15.1.3. ЗАКАЧКА ГОРЯЧЕЙ ВОДЫ И ПАРА
- •15.2. МЕТОД ВЛАЖНОГО И СВЕРХВЛАЖНОГО ВНУТРИПЛАСТОВОГО ГОРЕНИЯ
- •16. ЭКОЛОГИЧЕСКИЕ АСПЕКТЫ МЕТОДОВ РАЗРАБОТКИ МЕСТОРОЖДЕНИЙ
- •17. МОНИТОРИНГ НЕФТЯНОГО ЗАГРЯЗНЕНИЯ
- •17.1. СИСТЕМА НАБЛЮДЕНИЯ ЗА НЕФТЯНЫМ ЗАГРЯЗНЕНИЕМ
- •17.2. КОНТРОЛЬ ЗА ЗАГРЯЗНЕНИЕМ ОКРУЖАЮЩЕЙ СРЕДЫ В ЗОНЕ ДЕЯТЕЛЬНОСТИ НЕФТЕГАЗОДОБЫВАЮЩИХ УПРАВЛЕНИЙ

vk.com/club152685050 | vk.com/id446425943
электродвигателей станков-качалок и передвижных токоприемников при выполнении ремонтных работ. КТППНКС рассчитана на применение в условиях Крайнего Севера и Западной Сибири.
В комплект поставки установки входят: насос, кабель в сборе, двигатель, трансформатор, комплектная трансформаторная подстанция, комплектное устройство, газосепаратор и комплект инструмента.
4.2. Установки погружных винтовых электронасосов
Установки погружных винтовых сдвоенных электронасосов типа УЭВН5 предназначены для откачки из нефтяных скважин пластовой жидкости повышенной вязкости (до 1 103 м2/с) температурой 70оС, с содержанием механических примесей не более 0,4 г/л, свободного газа на приеме насоса - не более 50% по объему.
Установка погружного винтового сдвоенного электронасоса (рис. 30) состоит из насоса, электродвигателя с гидрозащитой, комплектного устройства, токоподводящего кабеля с муфтой кабельного ввода. В состав установок с подачами 63, 100 и 200 м3/сут входит еще и трансформатор, так как двигатели этих установок выполнены соответственно на напряжение 700 и 1000 В.
Установки выпускаются для скважин с условным диаметром колонны обсадных труб 146 мм.
С учетом температуры в скважине установки изготавливают в трех модификациях: для температуры 30оС (А); для температуры 30 50оС (Б);
для температуры 50 70оС (В, Г).
Рис. 30. Установки погружного винтового сдвоенного электронасоса:
1 – трансформатор; 2 – комплектное устройство;
3- пояс крепления кабелей;
4- насосно-компрессорная труба; 5 – винтовой насос; 6 – кабельный ввод; 7 – электродвигатель с гидрозащитой
Вобозначении установок в зависимости от температуры добываемой жидкости введены буквы А, Б и В (Г). Например, УЭВН5-16-1200А или УЭВН5-200-900В.
Все установки комплектуют погружными двигателями типа ПЭД с гидрозащитой
1Г51.
Приводом винтовых насосов служит электродвигатель трехфазный, асинхронный, короткозамкнутый, четырехполюсный, погружной, маслонаполненный. Исполнение двигателя вертикальное, со свободным концом вала, направленным вверх.
Гидрозащита предохраняет его внутреннюю полость от попадания пластовой жидкости, а также компенсирует температурные изменения объема и расхода масла при работе двигателя. С помощью гидрозащиты осуществляется выравнивание двигателя с давлением в скважине на уровне его подвески.
39

vk.com/club152685050 | vk.com/id446425943
Внутренняя полость двигателей заполнена специальным маслом высокой диэлектрической прочности.
Установки обеспечивают подачу от 16 до 200 м3/сут, давление 9 12МПа; КПД погружного агрегата составляет 38 50%; мощность электродвигателя 5,5, 22 и 32 кВт; масса погружного агрегата 341 713 кг; частота вращения - 1500 мин-1.
4.3. Установки погружных диафрагменных электронасосов Установки погружных диафрагменных электронасосов УЭДН5 предназначены для
эксплуатации малодебитных нефтяных скважин преимущественно с пескопроявлениями, высокой обводненностью продукции, кривыми и наклонными стволами с внутренним диаметром обсадной колонны не менее 121,7 мм.
Содержание попутной воды в перекачиваемой среде не ограничивается. Максимальная массовая концентрация твердых частиц 0,2% (2 г/л); максимальное объемное содержание попутного газа на приеме насоса 10%; водородный показатель попутной воды рН=6,0 8,5; максимальная концентрация сероводорода 0,001% (0,01 г/л).
Основные показатели установок типа УЭДН5 в номинальном режиме при перекачивании электронасосом воды плотностью 1000 кг/м3, температурой 45°С при напряжении сети 350 В и частоте тока 50 Гц приведены в табл. 8. Погружной диафрагменный электронасос опускается в скважину на насосно-компрессорных трубах (ГОСТ 633-80) условным диаметром 42, 48 или 60 мм.
Таблица 8 Технические характеристики насосов типа УЭДН5
|
Обозначение |
Значения по параметрам |
|
Технич. и |
Ток, А, |
Рекомендуемой |
||||||
|
установки |
|
|
|
|
|
энергет. |
средний |
рабочей части |
|||
|
(типоразмер) |
|
|
|
|
|
эффектив. |
|
характеристики по |
|||
|
|
По- |
Давле- |
Мощ- |
|
КПД, |
Подпор, |
|
давлени |
подача, |
|
|
|
|
дача, |
ние МПа |
ность, |
%, |
м, не |
|
ю, МПа |
м3/сут, |
|
||
|
|
м3/сут, |
(кгс/см2) |
кВТ, |
|
не |
более |
|
(кгс/см2) |
соответс |
|
|
|
|
не |
|
|
не |
|
менее |
|
|
|
твенно |
|
|
|
менее |
|
|
менее |
|
|
|
|
|
|
|
|
|
|
|
|
Электронасоса типа ЭДН5 |
|
|
|
||||
|
УЭДН5-4-1700 |
4 |
17 |
(170) |
2,20 |
|
35 |
10 |
9 |
3 17 |
6 4 |
|
|
|
|
|
|
|
|
|
|
|
(30 170) |
|
|
|
УЭДН5- 6,3-1300 |
6,3 |
13 |
(130) |
2,45 |
|
38 |
10 |
9 |
3 13 |
8 6,5 |
|
|
|
|
|
|
|
|
|
|
|
(30 130) |
|
|
|
УЭДН5-8-1100 |
8 |
11 |
(110) |
2,60 |
|
38 |
10 |
9,2 |
3 11 |
10 8 |
|
|
|
|
|
|
|
|
|
|
|
(30 130) |
|
|
|
УЭДН5-10-1000 |
10 |
10 |
(100) |
2,80 |
|
40 |
10 |
9,5 |
3 10 |
11 10 |
|
|
|
|
|
|
|
|
|
|
|
(30 100) |
|
|
|
УЭДН5-12,5-800 |
12,5 |
8 |
(80) |
2,85 |
|
40 |
15 |
9,6 |
3 8 |
14 12 |
|
|
|
|
|
|
|
|
|
|
|
(30 80) |
|
|
|
УЭДН5-16-650 |
16 |
6,5 (65) |
2,85 |
|
40 |
20 |
9,6 |
3 6,5 |
17 16 |
|
|
|
|
|
|
|
|
|
|
|
|
(30 65) |
|
|
Примечания:
1.Значения показателей указаны при перекачивании воды плотностью 1000 кг/м3 температурой 45 С при напряжении сети 380 В и частоте тока в сети 50 Гц.
2.Эксплуатация при давлении на выходе насоса, превышающем номинальное значение, не допускается.
Изготовитель: Машиностроительный завод им. Сардарова, г. Баку.
40

vk.com/club152685050 | vk.com/id446425943
Рис. 31. Погружной диафрагменный электронасос:
1 – токоввод; 2 – нагнетательный клапан; 3 – всасывающий клапан; 4 – диафрагма; 5 – пружина; 6 – плунжерный насос; 7 – эксцентриковый привод; 8 – конический редуктор; 9
– электродвигатель; 10 - компенсатор
Электронасос (рис. 31 насос и электродвигатель в одном корпусе) содержит асинхронный четырехполюсный электродвигатель, конический редуктор и плунжерный насос с эксцентриковым приводом и пружиной для возврата плунжера. Муфта кабеля соединяется с токовводом.
Установки обеспечивают подачу от 4 до 16 м3, давление 6,5 17 МПа, КПД 35-40%, мощность электродвигателя 2,2 2,85 кВт; частота вращения электродвигателя - 1500 мин- 1, масса от 1377 до 2715 кг.
4.4. Арматура устьевая
Для герметизации устья нефтяных скважин, эксплуатируемых погружными центробежными, винтовыми и диафрагменными электронасосами, применяют устьевую арматуру типа АУЭ-65/50-14 или устьевое оборудование типа ОУЭ-65/50-14. Арматура типа АУЭ-65/ 50-14 состоит из корпуса, трубной подвески, отборника давления с пробоотборником, угловых вентилей, перепускного клапана и быстросборного соединения (рис. 32).
|
Техническая характеристика |
Рабочее давление, МПа |
14 |
Тип запорного устройства: |
|
ствола |
Кран пробковый |
боковых отводов |
Вентиль угловой |
Габариты, мм |
3452х770х1220 |
Масса, кг |
200 |
41

vk.com/club152685050 | vk.com/id446425943
Рис. 32. Устьевая арматура типа АУЭ:
1 - перепускной клапан; 2 - манжета; 3 - уплотнение кабеля; 4 - пробковый кран; 5 - патрубок; 6 - зажимная гайка; 7 - трубная подвеска; 8 - корпус; 9,12,13 - угловые вентили; 10 - отборник проб, 11 - быстросъемное соединение
4.5. Комплекс оборудования типа КОС и КОС1
Комплексы предназначены для перекрытия ствола скважин при повышении забойного давления или динамического уровня жидкости в полуфонтанных скважинах, эксплуатируемых штанговыми и погружными электроцентробежными насосами. Комплексы обеспечивают проведение ремонтно-профилактических работ в скважине без предварительного глушения.
Комплекс КОС состоит из пакера ПД-ЯГ или 2ПД-ЯГ, разъединителя колонны типа ЗРК и клапана-отсекателя типа КАС с замком типа ЗНЦБ.
Комплекс КОС1 (рис. 33) состоит из разбуриваемого пакера с хлопушечным обратным клапаном типа 1ПД-ЯГР и съемного клапана отсекателя сильфонного типа КАС1, устанавливаемого в пакер, гидравлического домкрата ДГ.
Рис. 33. Комплекс оборудования типа КОС1:
1 - пакер типа 1ПД-ЯГР; 2 - клапан-отсекатель типа КАС1; 3 - центробежный скважинный электронасос
В состав комплексов входят также комплект инструментов, монтажных частей, стенд для зарядки и регулирования клапанов-отсекателей.
На рис. 34 показан комплекс оборудования КОС в скважинах, эксплуатируемых скважинными и погружными насосами.
42

vk.com/club152685050 | vk.com/id446425943
Рис. 34. Комплекс оборудования типа КОС:
а – для скважин, эксплуатируемых скважинными штанговыми насосами; б – для скважин, эксплуатирумых центробежными электронасосами; в – клапан-отсекатель открыт; г - клапан-отсекатель закрыт; 1 – станок-качалка; 2 – скважинный штанговый насос; 3 – замок типа ЗНЦБ; 4 – разъединитель колонны типа ЗРК (оставляемая в скважине часть); 5
– клапан-отсекатель типа КАС; 6 – пакер 2ПД-ЯГ; 7 – оборудование устья скважины, эксплуатируемой центробежными электронасосами; 8 – центробежный скважинный электронасос
В комплексе КОС установка пакера и клапана отсекателя производится насоснокомпрессорными трубами, а КОС1 - с помощью канатной техники.
Техническая характеристика комплексов КОС
Рабочее давление, МПа |
35 |
Условный диаметр эксплуатационной |
|
колонны, труб, мм |
140, 146, 168 |
Наружный диаметр пакера, мм |
118, 122, 136, 140, 145 |
Глубина установки клапана, м, не более |
2500 |
Масса, кг |
от 110 129 до 252 349 |
43