
- •1.1. Место статистических методов в стандартах iso 9000
- •1.2. История развития статистических методов качества
- •2.1. Проверка статистических гипотез
- •2.1.1. Основные понятия о статистической гипотезе
- •2.1.2. Ошибки при проверке статистических гипотез
- •2.1.3. Проверка биномиальных гипотез
- •2.1.4. Критерий согласия χ² (хи – квадрат)
- •2.2. Анализ безотказности
- •2.2.1. Взаимосвязь качества и надежности. Виды отказов
- •2.2.2. Методы оценки надежности
- •2.2.3. Резервирование
- •2.2.4. Основные меры по обеспечению надежности
- •3.1. Факторный анализ
- •3.1.1. Основные понятия
- •3.1.2. Сущность факторного анализа
- •3.1.3. Дисперсионный анализ факторов
- •3.2. Корреляционный и регрессионный анализ
- •3.2.1. Понятие о корреляционных связях
- •3.2.2. Определение уравнений регрессии
- •3.2.3. Определение коэффициента корреляции
- •3.3. Планирование многофакторного эксперимента
- •3.3.1.Основные понятия и определения
- •3.3.2. Выбор факторов, областей их варьирования и вида уравнения регрессии
- •3.3.3. Построение плана эксперимента
- •3.3.4. Полный факторный эксперимент
- •4.1 Анализ временных рядов
- •4.1.1. Метод подвижного среднего
- •4.1.2. Метод экспоненциального сглаживания
- •4.1.3. Метод проецирования тренда
- •4.2. Казуальные методы прогнозирования
- •4.3. Качественные методы прогнозирования
- •4.4. Статистическое моделирование (метод Монте–Карло)
- •4.4.1. Основные положения
- •4.4.2. Практические приложения метода Монте – Карло
3.1.3. Дисперсионный анализ факторов
Укажем на одно принципиально важное свойство коэффициента корреляции между переменными: возведенный в квадрат он показывает, какая часть дисперсии (разброса) признака является общей для двух переменных. Или, говоря проще, насколько сильно эти переменные перекрываются. Так например, если две переменные Т1 и Т3 с корреляцией 0,8 перекрываются со степенью 0,64 (0,8 в квадрате), то это означает, что 64% дисперсии той и другой переменной являются общими, т.е. совпадают. Можно также сказать, что общность этих переменных равна 64%.
Напомним, что факторные нагрузки в факторной матрице (табл. 3.3) являются тоже коэффициентами корреляции, но между факторами и переменными (потребительскими требованиями). Поэтому возведенная в квадрат факторная нагрузка (дисперсия) характеризует степень общности (или перекрытия) данной переменной и данного фактора. Определим степень перекрытия (дисперсию D) обоих факторов с переменной (потребительским требованием) Т1. Для этого необходимо вычислить сумму квадратов весов факторов с первой переменной, т.е. 0,83•0,83 + 0,3•0,3 = 0,70. Таким образом общность переменной Т1 с обоими факторами составляет 70%. Это достаточно значимое перекрытие.
В то же время, низкая общность может свидетельствовать о том, что переменная измеряет или отражает нечто, качественно отличающееся от других переменных, включенных в анализ. Это подразумевает, что данная переменная не совмещается с факторами по одной из причин: либо переменная измеряет другое понятие (как, например, переменная Т7), либо переменная имеет большую ошибку измерения, либо существуют искажающие дисперсию признаки.
Следует отметить, что значимость каждого фактора также определяется величиной дисперсии между переменными и факторной нагрузкой (весом). Для того чтобы вычислить собственное значение фактора, нужно найти в каждом столбце факторной матрицы (табл. 3.3) сумму квадратов факторной нагрузки для каждой переменной. Таким образом, например, дисперсия фактора А (DA) составит 2,42 = 0,83•0,83 + 0,3•0,3 + 0,83•0,83 + 0,4•0,4 + 0,8•0,8 + 0,35•0,35. Расчет значимости фактора Б показал, что DБ = 2,64, т. е. значимость фактора Б выше, чем фактора А.
Если собственное значение фактора разделить на число переменных (в нашем примере их 7), то полученная величина покажет, какую долю дисперсии (или объем информации) γ в исходной корреляционной матрице составит этот фактор. Для фактора А γ =0,34 (34%), а для фактора Б – γ = 0,38 (38%). Просуммировав результаты, получим 72%. Таким образом, два фактора, будучи объединены, заполняют только 72% дисперсии показателей исходной матрицы. Это означает, что в результате факторизации часть информации в исходной матрице была принесена в жертву построения двухфакторной модели. В результате – упущено 28% информации, которая могла бы восстановиться, если бы была принята шестифакторная модель.
Где же допущена ошибка, учитывая, что все рассмотренные переменные, имеющие отношение к требованиям по конструкции двери, учтены? Наиболее вероятно, что значения коэффициентов корреляции переменных, относящихся к одному фактору, несколько занижены. С учетом проведенного анализа можно было бы вернуться к формированию иных значений коэффициентов корреляции в матрице интеркорреляций (таблица 3.2).
На практике часто сталкиваются с ситуацией, что число независимых факторов достаточно велико, чтобы их всех учесть в решении проблемы или с технической или экономической точки зрения. Существует ряд способов по ограничению числа факторов. Наиболее известный из них – анализ Парето. При этом отбираются те факторы (по мере уменьшения значимости), которые попадают в (80-85)% границу их суммарной значимости.
Факторный анализ можно использовать при реализации метода структурирования функции качества (QFD), широко применяемого за рубежом при формировании технического задания на новое изделие.