
- •Основные правила комбинаторики. Перестановки. Размещения. Сочетания.
- •Случайные события. Операции над случайными событиями.
- •Определение вероятности. Относительная частота.
- •Геометрические вероятности.
- •Теорема сложения для совместных событий.
- •Теорема сложения для несовместных событий.
- •Условная вероятность событий.
- •Зависимые и независимые случайные события.
- •Повторение событий. Формула Бернулли.
- •Формула Пуассона.
- •Локальная теорема Лапласа.
- •Интегральная теорема Лапласа.
- •Определение случайной величины. Операции над случайными величинами.
- •Закон распределения вероятностей дискретной случайной величины.
- •Основные законы распределения дискретной случайной величины
- •Математическое ожидание дискретной случайной величины. Свойства.
- •Дисперсия и среднее квадратическое отклонение дискретной случайной величины. Свойства.
- •Непрерывные случайные величины. Функция распределения непрерывной случайной величины.
- •Плотность распределения непрерывной случайной величины.
- •Равномерное распределение непрерывной случайной величины.
- •Показательное распределение непрерывной случайной величины.
- •Нормальное распределение непрерывной случайной величины. Вычисление параметров распределения. Правило 3 сигм.
- •Закон больших чисел. Неравенство Чебышева.
- •Закон больших чисел. Теоремы Чебышева.
- •Закон больших чисел. Теорема Бернулли.
- •Понятие многомерной случайной величины. Двумерная случ величины. Условные законы распред.
- •Функция распределения двумерной случайной величины. Свойства.
- •Непрерывные двумерные случайные величины. Плотность вероятностей двумерной случайной величины
- •Дисперсия двумерной случайной величины. Свойства
- •Математическое ожидание двумерной случайной величины. Свойства
- •Зависимые и независимые двумерные случайные величины
- •Ковариация и коэффициент корреляции.
- •Уравнение прямой линии регрессии. Метод наименьших квадратов.
- •Выборочный метод
- •Понятие вариационного ряда
- •Выборочные характеристики вариационного ряда.
- •Точечные оценки. Метод максимального правдоподобия.
- •Интервальные оценки.
- •Статистическая проверка гипотез.
- •43 Статистическая проверка гипотез
- •44 Системы массового обслуживания.
- •45 Основные понятия теории графов
- •46. Задача о максимальном потоке
- •47. Понятие о сетевом планировании
-
Интервальные оценки.
Интервальной называют оценку, которая определяется двумя числами – концами интервала. Интервальные оценки позволяют установить точность и надёжность оценок
если и
,
то, чем меньше
,
тем оценка точнее. Таким образом,
положительное число
характеризует точность
оценки.
Надёжностью (доверительной
вероятностью)
оценки по
называют
вероятность
,
с которой осуществляется неравенство
,
то есть
Согласно определению
.
Это
соотношение следует понимать так:
вероятность того, что интервал заключает
в себе неизвестный параметр
равна
.
-
Статистическая проверка гипотез.
Статистическая гипотеза – любое предложение о виде или параметрах неизвестного закона распределения.
Различают гипотезы простые (одно утверждение) и сложные (несколько утверждений).
Гипотезы:
-Нулевые (Н0) – основная; проверяемая гипотеза
-Альтернативные (Н1) – логическое отрицание Н0
Статистическим критерием называется случайная величина, которая используется с целью проверки нулевой гипотезы. Статистические критерии называются соответственно по тому закону распределения, которому они подчиняются, т. е. F-критерий подчиняется распределению Фишера-Снедекора, χ2-критерий подчиняется χ2-распределению, Т-критерий подчиняется распределению Стьюдента, U-критерий подчиняется нормальному распределению.
-
Областью принятия гипотезы или областью допустимых значений называется множество возможных значений статистического критерия, при которых основная гипотеза принимается. Если наблюдаемое значение статистического критерия, рассчитанное по данным выборочной совокупности, принадлежит критической области, то основная гипотеза отвергается. Если наблюдаемое значение статистического критерия принадлежит области принятия гипотезы, то основная гипотеза принимается.
Процедура проверки гипотез обычно проводится по следующей схеме:
-
Формулируются гипотезы Н0 и Н1.
-
Выбирается уровень значимости критерия.
-
По выборочным данным вычисляется значение некоторой случайной величины, называемой статистикой критерия, или просто статистическим критерием, который имеет известное стандартное распределение (нормальное, Т-распределение Стьюдента и т.п.)
-
Вычисляется критическая область и область принятия гипотезы. То есть находят критическое (граничное) значение критерия при выбранном уровне значимости.
5. Найденное значение критерия сравнивается с критическим и по результатам сравнения делается вывод: отвергнуть гипотезу или не отвергнуть. Если вычисленное по выборке значение критерия меньше чем критическое, то нулевую гипотезу Но не отвергают на заданном уровне значимости.
43 Статистическая проверка гипотез
Статистической называют гипотезу о виде неизвестного распределения или о параметрах неизвестных распределений.
Основной принцип проверки статистических гипотез можно сформулировать так: если наблюдаемое значение критерия принадлежит критической области - гипотезу отвергают, если наблюдаемое значение критерия принадлежит области принятия гипотезы – гипотезу принимают.
В итоге проверки статистических гипотез могут быть допущены ошибки двух родов:
Ошибка первого рода состоит в том, что будет отвергнута правильная гипотеза.
Ошибка 2 рода состоит в том, что будет принята неправильная гипотеза.
Различают:
нулевую (основную гипотезу) – это выдвинутая гипотеза H0 (индекс)
Конкурирующую – Н1, которая противоречит нулевой.
Простую – содержит только 1 предположение
Сложную – состоит из конечного или бесконечного числа простых гипотез.