
- •Органика
- •Теория химического строения органических соединений Бутлерова. Ее современная трактовка. Виды и природа химических связей. Взаимное влияние атомов в молекуле и его приода.
- •Алканы. Строение, изомерия, номенклатура, физ. Свойства. Способы и источники получения алканов. Химические свойства алканов.
- •Полимеризация алкенов. Виды и механизмы цепной полимеризации. Полиэтилен. Полипропилен. Стереорегулярные полимеры.
- •Алкины. Строения, изомерия, номенклатура, способы получения, физические свойства. Промышленное получение ацетилена. Химический свойства алкинов. Реакции присоединения, их промышленное значение.
- •Алкадиены. Изомерия, номенклатура, получение, физические свойства. Сопряженные диены. Свойства сопряженных π-связей.
- •Химические свойства сопряженных диенов. Реакции присоединения. Полимеризация и сополимеризация. Натуральный и синтетический каучук.
- •Арены для бензола. Изомерия, номенклатура, природные источники и методы получения. Физические свойства и строение. Химические свойства аренов. Правила замещения в бензольном ядре.
- •Галогенпроизводные углеводородов. Химические свойства галогеналканов. Реакции замещения и отщепления. Правило Зайцева.
- •Полигалогеналканы. Получение, номенклатура. Физические и химические свойства. Области применения.
- •Галогеналкены. Получение, номенклатура. Физические и химические свойства. Поливинилхлорид, фторопласт.
- •Галогенарены. Получение, номенклатура. Физические и химические свойства.
- •Многоатомные спирты. Гликоли. Классификация, номенклатура, свойства. Получение и применение этиленгликоля и глицерина.
- •Фенолы. Изомерия, номенклатура, методы получения. Физические и химические свойства. Полифенолформальдегидные пластмассы.
- •Альдегиды и кетоны. Классификация, изомерия, номенклатура, способы получения. Химические свойства карбонильных соеднинений.
- •Монокарбоновые кислоты. Классификация и номенклатура. Промышленные и лабораторные методы получения. Физический свойства и строение. Водородная связь.
- •Непредельные кислоты. Способы получения, свойства. Акриловая и метакриловая кислоты, полимеры на их основе.
Галогенпроизводные углеводородов. Химические свойства галогеналканов. Реакции замещения и отщепления. Правило Зайцева.
Галогенопроизводными называются производные углеводородов, в которых один или несколько атомов водорода заменены атомами галогена.
Химические свойства галогеналканов
1. Галогеналканы легко вступают в реакции замещения. Это связано с тем, что связь С-Г полярна и на атоме углерода имеется частичный положительный заряд (+). Поэтому атом углерода легко атакуется нуклеофилами, такими, как анионы ОН- и CN-, или соединениями с неподеленными электронными парами: NH3 и Н2О:. Галогенид-ион является, как говорят, «хорошей уходящей группой», поэтому реакции замещения идут достаточно легко:
Примерами таких реакций служит превращение галогеналканов в спирты и амины:
Условия, необходимые для протекания таких реакции, сильно зависят от строения галогеналкана и природы нуклеофила. В некоторых случаях достаточно простого смешения реагентов, в других — требуется длительное нагревание.
Легкость замещения атома галогена в значительной степени зависит и от природы галогена. Энергия связи ОТ увеличивается в ряду С—I<С—Br<С—Сl<С—F. В этом же ряду уменьшается реакционная способность галогеналканов. Связь С—F настолько прочна, что фторалканы практически не вступают в реакции нуклеофильного замещения. Активность остальных галогеналканов по отношению к нуклеофилам падает в ряду RI>RBr>RCl.
2. Галогеналканы также легко вступают в реакции отщепления. При этом образуются галогеноводород и алкен. Эти реакции протекают при действии основания на галогеналкан. Таким образом, при действии сильных оснований на Галогеналканы отщепляются молекулы НГ и образуются алкены:
RСН2СН2Г+ОН-RCH2CH2OH+Г- — замещение RСН2СН2Г+ОН-RCH=CH2+Н2O+Г- — отщепление (СН3)3ССl+ОН-(СН3)2C-СН2+Н2O+Сl-
Скорости замещения и отщепления зависят также от структуры углеводородного радикала. Роль реакции замещения возрастает в следующем ряду галогеналканов:
Первичные < Вторичные < Третичные
Третичные Галогеналканы вступают в реакцию замещения особенно легко (в отсутствие сильного основания):
(СН3)3ССl+Н2Oводный этанол ,25°
(СН3)3СОН+НСl
В целом в присутствии водного раствора основания для первичных галогеналканов характерны в основном реакции отщепления, вторичные Галогеналканы дают, как правило, смесь продуктов отщепления и замещения, а третичные образуют главным образом продукты замещения.
Галогеналканы вступают в SN-реакции с различными нуклеофилами, такими, как цианид-анион CN-, ацетат-анион
СН3СОO-, аммиак :NH3, амины RN..H2 и многие другие.
3. При добавлении раствора галогеналкана в диэтиловом эфире СН3СН2ОСН2СН3 к магниевой стружке происходит экзотермическая реакция: магний переходит в раствор и образуется реактив Гриньяра формулы R—Mg—Г, где R — алкильная или арильная группа, а Г — галоген.
RГ+Mgэфир R-Mg-Г
Реактивы Гриньяра вступают в реакции со многими соединениями, что позволяет использовать их в синтезе самых различных веществ.
Зайцева правило,
закономерность отщепления элементов галогеноводорода от алкилгалогенидов. Согласно З. п., при отщеплении от алкилгалогенида молекулы НХ (X — атом галогена) отрыв водорода происходит от того атома углерода, с которым связано наименьшее число атомов водорода, т. е. от наименее гидрогенизованного. Например, при действии на (CH3)2CHCHICH3 спиртового раствора KOH образуется в основном триметилэтилен (CH3)2C=CHCH3 и лишь незначительное количество (CH3)2CH—CH=CH2. З. п. сформулировано А. М. Зайцевым (1875).