
http://www.dpva.info/Guide/GuideMathematics/Equations
Решение квадратных уравнений. Дискриминант. Формула дискриминанта. Теорема Виета.
Квадратным уравнением называется уравнение вида
,
Где x - переменная, a, b, c - постоянные (числовые) коэффициенты.
В общем случае решение квадратных уравнений сводится к нахождению дискриминанта:
Формула дискриминанта: |
|
О корнях квадратного уравнения можно судить по знаку дискриминанта (D) :
D>0 - уравнение имеет 2 различных вещественных корня
D=0 - уравнение имеет 2 совпадающих вещественных корня
D<0 - уравнение имеет 2 мнимых корня (для непродвинутых пользователей - корней не имеет)
В общем случае корни уравнения равны:
.
Очевидно, в случае с нулевым дискриминантом, оба корня равны
.
Если коэффициент при х четный, то имеет смысл вычислять не дискриминант, а четверть дискриминанта:
В таком случае корни уравнения вычисляются по формуле:
Теорема Виета.
Приведенным
квадратным уравнением
называется уравнение вида
,
то есть квадратное уравнение с единичным коэффициентом при старшем члене.
В этом случае целесообразно применять теорему Виета, которая позволяет получить относительно корней уравнения следующую систему уравнений:
Следует заметить, что любое квадратное уравнение может стать приведенным, если его поделить на коэффициент при старшем члене,
то есть при х2.
Квадратное уравнение имеет вид:
Стандартный метод нахождения корней уравнения происходит в два этапа. Сначала вычисляется дискриминант уравнения по формуле
Затем считаются корни по формуле
Данный онлайн калькулятор решает квадратные уравнения именно таким способом.
**********
Если известны корни уравнения, то исходный многочлен можно разложить на множители:
В ряде задач удобно использовать теорему Виета, которая выглядит следующим образом:
********************************************************************
Как решать квадратные уравнения? Дискриминант. http://www.egesdam.ru/page221.html
Поработаем с квадратными уравнениями. Это очень популярные уравнения! В самом общем виде квадратное уравнение выглядит так:
Например:
Здесь а =1; b = 3; c = -4
Или:
Здесь а =2; b = -0,5; c = 2,2
Или:
Здесь а =-3; b = 6; c = -18
Ну, вы поняли…
Как решать квадратные уравнения? Если перед вами квадратное уравнение именно в таком виде, дальше уже всё просто. Вспоминаем волшебное слово дискриминант. Редкий старшеклассник не слышал этого слова! Фраза «решаем через дискриминант» вселяет уверенность и обнадёживает. Потому что ждать подвохов от дискриминанта не приходится! Он прост и безотказен в обращении. Итак, формула для нахождения корней квадратного уравнения выглядит так:
Выражение под знаком корня – и есть тот самый дискриминант. Как видим, для нахождения икса, мы используем только a, b и с. Т.е. коэффициенты из квадратного уравнения. Просто аккуратно подставляем значения a, b и с в это формулу и считаем. Подставляем со своими знаками! Например, для первого уравнения а =1; b = 3; c = -4. Вот и записываем:
Пример практически решён:
Вот и всё.
Какие случаи возможны при использовании этой формулы? Всего три случая.
1. Дискриминант положительный. Это значит, из него можно извлечь корень. Хорошо корень извлекается, или плохо – вопрос другой. Важно, что извлекается в принципе. Тогда у вашего квадратного уравнения – два корня. Два различных решения.
2. Дискриминант равен нулю. Тогда у вас одно решение. Строго говоря, это не один корень, а два одинаковых. Но это играет роль в неравенствах, там мы поподробнее вопрос изучим.
3. Дискриминант отрицательный. Из отрицательного числа квадратный корень не извлекается. Ну и ладно. Это означает, что решений нет.
Всё очень просто. И что, думаете, ошибиться нельзя? Ну да, как же… Самые распространённые ошибки – путаница со знаками значений a, b и с. Вернее, не с их знаками (где там путаться?), а с подстановкой отрицательных значений в формулу для вычисления корней. Здесь спасает подробная запись формулы с конкретными числами. Если есть проблемы с вычислениями, так и делайте!
Предположим, надо вот такой примерчик решить:
Здесь a = -6; b = -5; c = -1
Допустим, вы знаете, что ответы у вас редко с первого раза получаются.
Ну и не ленитесь. Написать лишнюю строчку займёт секунд 30. А количество ошибок резко сократится. Вот и пишем подробно, со всеми скобочками и знаками:
Это кажется невероятно трудным, так тщательно расписывать. Но это только кажется. Попробуйте. Ну, или выбирайте. Что лучше, быстро, или правильно? Кроме того, я вас обрадую. Через некоторое время отпадёт нужда так тщательно всё расписывать. Само будет правильно получаться. Особенно, если будете применять практические приёмы, что описаны чуть ниже. Этот злой пример с кучей минусов решится запросто и без ошибок!
Итак, как решать квадратные уравнения через дискриминант мы вспомнили. Или научились, что тоже неплохо. Умеете правильно определять a, b и с. Умеете внимательно подставлять их в формулу корней и внимательно считать результат. Вы поняли, что ключевое слово здесь – внимательно?
Однако частенько квадратные уравнения выглядят слегка иначе. Например, вот так:
Или
так:
Это неполные квадратные уравнения. Их тоже можно решать через дискриминант. Надо только правильно сообразить, чему здесь равняются a, b и с.
Сообразили? В первом примере a = 1; b = -4; а c? Его вообще нет! Ну да, правильно. В математике это означает, что c = 0! Вот и всё. Подставляем в формулу ноль вместо c, и всё у нас получится. Аналогично и со вторым примером. Только ноль у нас здесь не с, а b !
Но неполные квадратные уравнения можно решать гораздо проще. Безо всякого дискриминанта. Рассмотрим первое неполное уравнение. Что там можно сделать в левой части? Можно икс вынести за скобки! Давайте вынесем.
И что из этого? А то, что произведение равняется нулю тогда, и только тогда, когда какой-нибудь из множителей равняется нулю! Не верите? Хорошо, придумайте тогда два ненулевых числа, которые при перемножении ноль дадут! Не получается? То-то… Следовательно, можно уверенно записать: х = 0, или х = 4
Всё. Это и будут корни нашего уравнения. Оба подходят. При подстановке любого из них в исходное уравнение, мы получим верное тождество 0 = 0. Как видите, решение куда проще, чем через дискриминант.
Второе уравнение тоже можно решить просто. Переносим 9 в правую часть. Получим:
Остаётся корень извлечь из 9, и всё. Получится:
Тоже два корня. х = +3 и х = -3.
Так решаются все неполные квадратные уравнения. Либо с помощью вынесения икса за скобки, либо простым переносом числа вправо с последующим извлечением корня. Спутать эти приёмы крайне сложно. Просто потому, что в первом случае вам придется корень из икса извлекать, что как-то непонятно, а во втором случае выносить за скобки нечего…
А теперь примите к сведению практические приёмы, которые резко снижают количество ошибок. Тех самых, что из-за невнимательности.… За которые потом бывает больно и обидно…
Приём первый. Не ленитесь перед решением квадратного уравнения привести его к стандартному виду. Что это означает? Допустим, после всяких преобразований вы получили вот такое уравнение:
Не бросайтесь писать формулу корней! Почти наверняка, вы перепутаете коэффициенты a, b и с. Постройте пример правильно. Сначала икс в квадрате, потом без квадрата, потом свободный член. Вот так:
И опять не бросайтесь! Минус перед иксом в квадрате может здорово вас огорчить. Забыть его легко… Избавьтесь от минуса. Как? Да как учили в предыдущей теме! Надо умножить всё уравнение на -1. Получим:
А вот теперь можно смело записывать формулу для корней, считать дискриминант и дорешивать пример. Дорешайте самостоятельно. У вас должны получиться корни 2 и -1.
Приём второй. Проверяйте корни! По теореме Виета. Не пугайтесь, я всё объясню! Проверяем последнее уравнение. Т.е. то, по которому мы записывали формулу корней. Если (как в этом примере) коэффициент а = 1, проверить корни легко. Достаточно их перемножить. Должен получиться свободный член, т.е. в нашем случае -2. Обратите внимание, не 2, а -2! Свободный член со своим знаком. Если не получилось – значит уже где-то накосячили. Ищите ошибку. Если получилось - надо сложить корни. Последняя и окончательная проверка. Должен получиться коэффициент b с противоположным знаком. В нашем случае -1+2 = +1. А коэффициент b, который перед иксом, равен -1. Значит, всё верно! Жаль, что это так просто только для примеров, где икс в квадрате чистый, с коэффициентом а = 1. Но хоть в таких уравнениях проверяйте! Всё меньше ошибок будет.
Приём третий. Если в вашем уравнении есть дробные коэффициенты, - избавьтесь от дробей! Домножьте уравнение на общий знаменатель, как описано в предыдущем разделе. При работе с дробями ошибки, почему-то так и лезут…
Кстати, я обещал злой пример с кучей минусов упростить. Пожалуйста! Вот он.
Чтобы не путаться в минусах, домножаем уравнение на -1. Получаем:
Вот и всё! Решать – одно удовольствие!
Итак, подытожим тему.
Практические советы:
1. Перед решением приводим квадратное уравнение к стандартному виду, выстраиваем его правильно.
2. Если перед иксом в квадрате стоит отрицательный коэффициент, ликвидируем его умножением всего уравнения на -1.
3. Если коэффициенты дробные – ликвидируем дроби умножением всего уравнения на соответствующий множитель.
4. Если икс в квадрате – чистый, коэффициент при нём равен единице, решение можно легко проверить по теореме Виета. Делайте это!
Справочник по математике |
|
Алгебра |
|
Кубические уравнения |
Решение кубических уравнений. Формула Кардано
Схема метода Кардано
Целью данного раздела является вывод формулы Кардано для решения уравнений третьей степени (кубических уравнений)
|
(1) |
где
- произвольные вещественные числа,
Вывод формулы Кардано состоит из двух этапов.
На первом этапе кубические уравнения вида (1) приводятся к кубическим уравнениям, у которых отсутствует член со второй степенью неизвестного. Такие кубические уравнения называют трёхчленными кубическими уравнениями.
На втором этапе трёхчленные кубические уравнения решаются при помощи сведения их к квадратным уравнениям.
Приведение кубических уравнений к трехчленному виду
Разделим
уравнение (1) на старший коэффициент
.
Тогда оно примет вид
|
(2) |
где
-
произвольные вещественные числа.
Заменим
в уравнении (2) переменную
на новую переменную
по
формуле:
|
(3) |
Тогда, поскольку
то уравнение (2) примет вид
|
(4) |
Если ввести обозначения
то уравнение (4) примет вид
|
(5) |
где
-
вещественные числа.
Уравнения вида (5) и являются трёхчленными кубическими уравнениями, у которых отсутствует член со второй степенью неизвестного.
Первый этап вывода формулы Кардано завершён.
Сведение трёхчленных кубических уравнений к квадратным уравнениям
Будем искать решение уравнения (5) в виде
|
(6) |
где
-
новая переменная.
Поскольку
то выполнено равенство:
Следовательно, уравнение (5) переписывается в виде
|
(7) |
Если
теперь уравнение (7) умножить на
,
то мы получим квадратное
уравнение
относительно
:
|
(8) |
Формула Кардано
Решение уравнения (8) имеет вид:
Следовательно,
В соответствии с (6), отсюда вытекает, что уравнение (5) имеет два решения:
|
(9) |
В развернутой форме эти решения записываются так:
|
(10) |
|
(11) |
Покажем, что, несмотря на кажущиеся различия, решения (10) и (11) совпадают.
Действительно,
С другой стороны,
Таким образом,
и для решения уравнения (5) мы получили формулу
|
(12) |
которая и называется «Формула Кардано».
Замечание. Поскольку у каждого комплексного числа, отличного от нуля, существуют три различных кубических корня, то, для того, чтобы избежать ошибок при решении кубических уравнений в области комплексных чисел, рекомендуется использовать формулу Кардано в виде (10) или (11).
Пример решения кубического уравнения
Пример. Решить уравнение
|
(13) |
Решение. Сначала приведем уравнение (13) к трехчленному виду. Для этого в соответствии с формулой (3) сделаем в уравнении (13) замену
|
(14) |
Тогда получим
Следовательно, уравнение (13) принимает вид
|
(15) |
|
Теперь
в соответствии с формулой (6) сделаем
в уравнении (15) еще одну замену
|
(16) |
Тогда поскольку
то уравнение (15) примет вид
|
(17) |
Далее из (17) получаем:
Отсюда по формуле (16) получаем:
|
(18) |
Заметим, что такое же, как и в формуле (18), значение получилось бы, если бы мы использовали формулу
или использовали формулу
Далее из равенства (18) в соответствии с (14) получаем:
Таким образом, мы нашли у уравнения (13) вещественный корень
Замечание 1. У уравнения (13) других вещественных корней нет.
Замечание 2. Поскольку произвольное кубическое уравнение в комплексной области имеет 3 корня с учетом кратностей, то до полного решения уравнения (13) остается найти еще 2 корня. Эти корни можно найти разными способами, в частности, применив вариант формулы Кардано для области комплексных чисел. Однако применение такого варианта формулы Кардано значительно выходит за рамки курса математики даже специализированных математических школ.