
- •Астрономические числа
- •Сколько весит весь воздух
- •Горение без пламени и жара
- •Разнообразие погоды
- •Замок с секретом
- •Суеверный велосипедист
- •Итоги повторного удвоения
- •В миллионы раз быстрее
- •10000 Действий в секунду
- •Число возможных шахматных партий
- •Секрет шахматного автомата
- •Тремя двойками
- •Жизнь Диофанта
- •Лошадь и мул
- •Четверо братьев
- •Птицы у реки
- •Прогулка
- •Артель косцов
- •Коровы на лугу
- •Задача Ньютона
- •Перестановка часовых стрелок
- •Совпадение часовых стрелок
- •Искусство отгадывать числа
- •Мнимая нелепость
- •Уравнение думает за нас
- •Курьезы и неожиданности
- •В парикмахерской
- •Трамвай и пешеход
- •Пароход и плоты
- •Две жестянки кофе
- •Вечеринка
- •Морская разведка
- •На велодромe
- •Состязание мотоциклов
- •Средняя скорость езды
- •Быстродействующие вычислительные машины
- •1) 34 36 20 2) 33 37 21 3) 32 36 22 4) 33 35 23 5) 32 37 24 6) 34 35 25 18-Й приказ: передача управления в первую ячейку.
- •Цифры 1, 5 и 6
- •Доплата
- •Делимость на 11
- •Номер автомашины
- •Делимость на 19
- •Число простых чисел
- •Когда без алгебры проще
- •Ревизия магазина
- •Покупка почтовых марок
- •Покупка фруктов
- •Отгадать день рождения
- •Продажа кур
- •Два числа и четыре действия
- •Какой прямоугольник?
- •Два двузначных числа
- •Пифагоровы числа
- •1) Один из "катетов" должен быть кратным трем. 2) Один из "катетов" должен быть кратным четырем. 3) Одно из пифагоровых чисел должно быть кратно пяти.
- •Неопределенное уравнение третьей степени
- •Сто тысяч за доказательство теоремы
- •Пчелиный рой
- •Задача Эйлера
- •Громкоговорители
- •Алгебра лунного перелета
- •"Трудная задача"
- •Какие числа?
- •Где устроить полустанок?
- •Как провести шоссе?
- •Когда произведение наибольшее?
- •Когда сумма наименьшая?
- •Постройка дома
- •Дачный участок
- •Желоб наибольшего сечения
- •Воронка наибольшей вместимости
- •Самое яркое освещение
- •Алгебра на клетчатой бумаге
- •Поливка огорода
- •Кормление кур
- •Бригада землекопов
- •Покупка лошади
- •Вознаграждение воина
- •Соперники логарифмов
- •Эволюция логарифмических таблиц
- •Логарифмические диковинки
- •Логарифмы на эстраде
- •Логарифмы на животноводческой ферме
- •Логарифмы в музыке
- •Звезды, шум и логарифмы
- •Логарифмы в электроосвещении
- •Завещания на сотни лет
- •Непрерывный рост капитала
- •Число "е"
- •Логарифмическая комедия
- •Любое число – тремя двойками
Бригада землекопов
ЗАДАЧА
Старшеклассники обязались вырыть на школьном участке канаву и организовали для этого бригаду землекопов. Если бы бригада работала в полном составе, канава была бы вырыта в 24 часа. Но в действительности к работе приступил сначала только один член бригады. Спустя некоторое время присоединился второй; еще через столько же времени – третий, за ним через такой же промежуток четвертый и так до последнего. При расчете оказалось, что первый работал в 11 раз дольше последнего. Сколько времени работал последний?
Рис. 35.
РЕШЕНИЕ
Пусть последний член бригады работал х часов, тогда первый работал 11x часов. Далее, если число рывших канаву учеников было у, то общее число часов работы определится как сумма у членов убывающей прогрессии, первый член которой 11x, а последний x, т. е.
.
С другой стороны, известно, что бригаду из у человек, работая в полном составе, выкопала бы канаву в 24 часа, т. е. что для выполнения работы необходимо 24y рабочих часов. Следовательно,
6xy = 24у.
Число у не может равняться нулю; на этот множитель можно поэтому уравнение сократить, после чего получаем:
6x = 24 и х = 4.
Итак, член бригады, приступивший к работе последним, работал 4 часа.
Мы ответили на вопрос задачи; но если бы мы полюбопытствовали узнать, сколько рабочих входило в бригаду, то не могли бы этого определить, несмотря на то, что в уравнении число это фигурировало (под буквой y). Для решения этого вопроса в задаче не приведено достаточных данных.
<Paaaa
Яблоки
ЗАДАЧА
Садовник продал первому покупателю половину всех своих яблок и еще пол-яблока, второму покупателю – половину оставшихся и еще пол-яблока; третьему – половину оставшихся и еще пол-яблока и т. д. Седьмому покупателю он продал половину оставшихся яблок и еще пол-яблока; после этого яблок у него не осталось. Сколько яблок было у садовника?
РЕШЕНИЕ
Если первоначальное число яблок х, то первый покупатель получил
,
второй
,
третий
,
седьмой покупатель
.
Имеем уравнение
или
.
Вычисляя стоящую в скобках сумму членов геометрической прогрессии, найдем:
и
.
Всех яблок было 127.
<Paaaa
Покупка лошади
ЗАДАЧА
В старинной арифметике Магницкого мы находим следующую забавную задачу, которую привожу здесь, не сохраняя языка подлинника:
Рис. 36.
Некто продал лошадь за 156 руб. Но покупатель, приобретя лошадь, раздумал ее покупать и возвратил продавцу, говоря:
– Нет мне расчета покупать за эту цену лошадь, которая таких денег не стоит.
Тогда продавец предложил другие условия:
– Если по-твоему цена лошади высока, то купи только ее подковные гвозди, лошадь же получишь тогда в придачу бесплатно. Гвоздей в каждой подкове 6. За первый гвоздь дай мне всего коп., за второй – коп., за третий – 1 коп. и т. д.
Покупатель, соблазненный низкой ценой и желая даром получить лошадь, принял условия продавца, рассчитывая, что за гвозди прийдется уплатить не более 10 рублей.
На сколько покупатель проторговался?
РЕШЕНИЕ
За 24 подковных гвоздя пришлось уплатить
копеек. Сумма эта равна
коп.,
т. е. около 42 тысяч рублей. При таких условиях не обидно дать и лошадь в придачу.
<Paaaa