
- •Предисловие к первому изданию
- •Единицы измерений систем си и сгс
- •Физические свойства меди и алюминия
- •Зависимость физических свойств электротехнической стали от содержания кремния
- •Глава первая принцип действия и устройство машин постоянного тока
- •Во внешней цепи (б)
- •Мотки якОрЯ.
- •Глава вторая магнитная цепь машины постоянного тока при холостом ходе
- •Уравнительные соединения
- •Глава четвертая основные электромагнитные соотношения
- •На технико-экономические показатели машины
- •98 Машины постоянного тока [Разд. I
- •I Круговой огонь представляет собой короткое замыкание якоря машины через электрическую дугу на поверхности коллектора.
- •Взаимная индукция, форма кривой и величина реактивной
- •2) Уменьшению реактивной э. Д. С. И 3) увеличению сопротивления цепи коммутируемой секции. Добавочные полюсы.
- •Глава седьмая потери и коэффициент полезного действия электрических машин
- •Глава восьмая нагревание и охлаждение электрических машин
- •Глава десятая двигатели постоянного тока
- •1. Наиболее удобным, распространенным и экономичным является способ регулирования скорости путем изменения потока ф6, т. Е. Тока возбуждения tB.
- •Регулирование скорости включением сопротивления в цепь якоря
- •Глава одиннадцатая специальные типы машин постоянного тока
- •Глава двенадцатая основные сведения о трансформаторах
- •Виды магнитопроводов.
- •I По конструкции магнитопровода трансформаторы подраз-| деляются на стержневые и броневые.
- •Глава тринадцатая намагничивание сердечников трансформаторов
- •Глава четырнадцатая схема замещения трансформатора и ее параметры
- •I Поэтому электромагнитная связь в трансформаторах весьма высока, а рассеяние мало.
- •1) Приведенное активное сопротивление вторичной обмотки
- •1 А. И. Воль дек. О схеме замещения трансформатора и ее параметрах. «Электричество», 1952, №. 8, с. 21-25.
- •Ib связи с изложенным можно сказать, что в режиме противо-включения существуют только магнитные поля рассеяния.
- •Глава пятнадцатая работа трансформатора под нагрузкой
- •Глава шестнадцатая несимметричная нагрузка трансформаторов
- •Глава семнадцатая переходные процессы в трансформаторах
- •Глава восемнадцатая разновидности трансформаторов
- •Глава девятнадцатая основные виды машин переменного тока и их устройство
- •Основные данные трехфазных гидрогенераторов завода «Электросила»
- •Глава двадцатая электродвижущие силы обмоток переменного тока
- •Глава двадцать первая обмотки переменного тока
- •X, y, z на 180°. При таком повороте этих векторов как при нечетном, так и при чешом d получим три одинаковых сектора векторов, и каждый сектор занимает угол 60° по
- •Глава двадцать вторая намагничивающие силы обмоток переменного тока
- •Н. С. Токов нулевой последовательности
- •Глава двадцать третья магнитные поля и индуктивные сопротивления обмоток переменного тока
- •I Индуктивные сопротивления, соответствующие этим гармоникам, назовем главными.
- •1 A. Ifc Вольдек. Рассеяние по коронкам зубцов в электрических машинах. — «Вестник электропромышленности», 1961, № 1, с. 60—62.
- •Глава двадцать четвертая основы теории асинхронных машин
- •Приведение обмотки ротора к обмотке статора.
- •Уравнения напряжений неприведенной асинхронной машины.
- •Глава двадцать пятая вращающие моменты и механические характеристики асинхронной машины
- •I Пусковой момент при данных значениях параметров машины также пропорционален квадрату приложенного напряжения.
- •I Очевидно, что вид механических характеристик существенно зависит от величины вторичного активного сопротивления.
- •Кратности начального пускового момента и пускового тока.
- •Глава двадцать шестая круговая диаграмма асинхронной машины
- •Глава двадцать восьмая пуск трехфазных асинхронных двигателей и регулирование их скорости вращения
- •Общие положения.
- •Регулирование скорости вращения посредством введения добавочной э. Д. С. Во вторичную цепь двигателя.
- •Глава двадцать девятая особые виды и режимы работы многофазных асинхронных машин
- •28 Mm, 975 об/мин при соединениях обмотки статора в трегулышк"
- •Глава тридцатая однофазные асинхронные машины
- •Глава тридцать первая асинхронные микромашины автоматических устройств
- •Глава тридцать вторая магнитные поля и основные параметры синхронных машин
- •Общие положения.
- •Глава тридцать третья работа многофазных синхронных генераторов при симметричной нагрузке
- •Номинальное изменение напряжения синхронного генератора
- •Глава тридцать четвертая элементы теории переходных процессов синхронных машин
- •Периодические и апериодические токи обмоток индуктора.
- •1Ри этих условиях.
- •Затухание апериодического тока якоря.
- •Глава тридцать пятая параллельная работа синхронных машин
- •Изменение активной мощности. Режимы генератора и двигателя.
- •Вывод формулы угловой характеристики активной мощности.
- •Синхронизирующая мощность и синхронизирующий момент.
- •Глава тридцать шестая асинхронные режимы и самовозбуждение синхронных машин
- •Глава тридцать седьмая синхронные двигатели и компенсаторы
- •Способы пуска синхронных двигателей.
- •Ib подавляющем большинстве случаев применяется асинхронный пуск синхронных двигателей (см. § 36-1 и 36-2).
- •Глава тридцать восьмая несимметричные режимы работы синхронных генераторов
- •Токи и сопротивления нулевой последовательности.
- •I Последние вызывают в машине ряд нежелательных явлений и делают режим работы машины тяжелым.
- •Потери энергии и нагрев ротора.
- •Вибрация.
- •Получим
- •Глава тридцать девятая колебания и динамическая устойчивость синхронных машин
- •Глава сороковая системы возбуждения синхронных машин
- •I Регуляторы, которые реагируют не только на величины отклонения определенных параметров, но и на величины их производных во времени, называются регуляторами сильного действия.
- •Глава сорок первая специальные типы синхронных машин
- •Глава сорок вторая многофазные коллекторные машины и каскады
- •I Однако в коммутируемых секциях к. М. П. Т , кроме реактивной э. Д с, возникает также трансформаторная э. Д. С. Етр, которая индуктируется основным магнитным потоком ф.
- •Список литературы
- •Предметный указатель
Изменение активной мощности. Режимы генератора и двигателя.
Из сказанного выше следует, что изменение тока возбуждения не вызывает появления активной нагрузки или ее изменения. Чтобы включенная на параллельную работу машина приняла на себя активную нагрузку и работала в режиме генератора, необходимо увеличить движущий механический вращающий момент на ее валу, увеличив, например, поступление воды или пара в турбину.
Тогда равенство моментов на валу нарушится, ротор генератора, а следовательно, и вектор э. д. с. генератора Ё з-абегут вперед на
некоторый угол 8 (рис. 35-5, в). При этом возникнет ток / [см. равенство (35-2)], отстающий, как и ранее, от АО = Ё — О на 90°. Но, как следует из рис. 35-5, в, в данном случае — 90° < ф < 90е и
т. е. машина отдает в сеть активную мощность.
Если, наоборот, притормозить ротор машины, создав на его валу механическую нагрузку, то э. д. с. Ё отстанет от О на некоторый угол 9, ток / будет отставать от О на угол 90° < Ф < 270°. При этом мощность машины Р = mUI cos ф<0 и машина будет работать в режиме двигателя, потребляя активную мощность из сети (рис. 35-5, г).
а) в$=о
Рис. 35-6. Характер магнитного поля в воздушном зазоре при работе синхронной машины на холостом ходу (о), в режиме генератора (б)
и двигателя (е)
Как следует из рис. 35-5, в и г, у генератора вектор О отстает от вектора Ё, а у двигателя — наоборот. Угол нагрузки е в первом случае будем считать положительным, а во втором — отрицательным.
Характер магнитного поля в зазоре между статором и ротором в режимах генератора и двигателя изображен на рис. 35-6. У генератора ось полюсов сдвинута относительно оси потока на поверхности статора на угол бе (см. рис. 33-1 и 33-4) вперед, по направлению вращения (8е>0). а у двигателя — против направления вращения (8б<0). Угол 9 s можно назвать внутренним углом нагрузки. Образование электромагнитного вращающего момента М и направление его действия согласно рис. 35-6 можно объяснить также тяжением магнитных линий.
Преобразование энергии в синхронных машинах нормальной конструкции, с вращающимся индуктором и возбудителем на общем валу, иллюстрируется энергетическими диаграммами рис. 35-7, где рмх — механические потери, рв — потери на возбуждение синхронной машины, включая потери в возбудителе, рд — добавочные потери от высших гармоник поля в стали статора и ротора, рмг — основные магнитные потери и рэл — электрические потери в обмотке якоря. Для генератора Рх — потребляемая с вала механиче-
екая мощность и Р2 — отдаваемая в сеть электрическая мощность, а для двигателя Рх — потребляемая из сети электрическая мощность и Р2 — развиваемая на валу механическая мощность. Электромагнитная мощность Рт передается с помощью магнитного поля с ротора на статор в режиме генератора и в обратном направлении — в режиме двигателя. Добавочные потери покрываются за счет механической мощности на роторе. Механические потери возбудителя включаются в потери рмХ.
Весьма важно отметить, что при изменении движущего или тормозящего механического момента на валу синхронная машина обладает свойствами саморегулирования и способностью до известных пределов сохранять синхронизм с сетью, т. е. синхронное вращение с другими синхронными машинами, приклочен-ными к этой сети. Например, при приложении к валу положительного вращающего момента М„ ротор будет ускоряться и угол нагрузки будет расти от нуля (рис. 35-5, в). Вместе с тем машина начинает нагружаться активной мощностью Р и развивать тормозящий электромагнитный момент М. При этом величины 6, Р и М будут расти до тех пор, пока не наступит равновесие моментов МСТ = М на валу. Одновременно" с этим восстановится также баланс между потребляемой с вала механической мощностью, отдаваемой в сеть электрической мощностью и потерями в машине. В случае приложения к валу тормозящего момента Мст (рис. 35-5, г) угол 6 будет расти по абсолютной величине также до тех пор, пока не восстановится равновесие моментов на валу и баланс мощностей.
Все изложенное выше действительно также для явнополюсной машины с той лишь разницей, что диаграммы рис. 35-5,-б и г будут несколько сложнее.
На рис. 35-5, в и г Е = U. Как видно из этих рисунков, при этом ток / будет иметь также некоторую реактивную составляющую. Если изменить ток возбуждения так, что будет Е 55 U, то при сохранении активной мощности это вызовет изменение реактивного тока и реактивной мощности (см., например, рис. 33-1, 33-2 и 33-4).
Параллельная работа синхронных генераторов на сеть ограниченной мощности. В ряде случаев мощность отдельного генератора составляет значительную часть мощности всех генераторов системы. В других случаях станция с несколькими генераторами соединена с мощной системой через длинную линию передачи. Хотя в этих условиях установленные выше общие положения также сохраняются в силе, однако при этом изменение режима работы одного генератора оказывает все же заметное влияние на режим работы других генераторов.
Для выяснения особенностей параллельной работы в этих условиях допустим, что параллельно на общую сеть работают два генератора одинаковой мощности, снабжая электроэнергией группу потребителей (см. рис. 35-2). Если, например, увеличить одновременно токи возбуждения ifl, ij2 этих генераторов, то напряжение U обоих генераторов и всей сети возрастет. При увеличении U в общем случае возрастет также реактивная мощность потребителей, например асинхронных двигателей. При ifl = ij2 эта мощность распределится поровну между обоими генераторами.
Если увеличить только ijx, то U также возрастет, но в меньшей степени. В то же время реактивная мощность генератора Г1 увеличится, а генератора Г2 — уменьшится. При увеличении i^ для сохранения U = const ток if% другого генератора нужно уменьшить. При этом реактивная мощность генератора П возрастет, а генератора Г2 — уменьшится.
Таким образом, в системе ограниченной мощности для повышения напряжения сети необходимо увеличивать токи возбуждения всех генераторов, а для перераспределения общей реактивной мощности между отдельными генераторами при U = const нужно токи возбуждения одних генераторов увеличивать, а других — уменьшать.
Если увеличить вращающие моменты или мощности первичных двигателей всех генераторов в системе ограниченной мощности, то скорость вращения этих двигателей и частота сети будут возрастать. При этом повысится также мощность потребителей, например, в результате повышения скорости вращения асинхронных двигателей. Повышение частоты будет происходить до тех пор, пока не наступит баланс мощностей между первичными двигателями и потребителями с учетом потерь в генераторах и сети. Для сохранения / = const при увеличении мощности первичного двигателя одного генератора мощность первичного двигателя второго нужно уменьшить. При этом происходит перераспределение активных мощностей.
При недостатке генерируемой активной мощности в системе частота / будет падать, что нарушит нормальное энергоснабжение потребителей. При недостатке генерируемой реактивной мощности
в системе (невозможность поддерживать на необходимом уровне реактивную мощность генераторов электростанций и синхронных компенсаторов во избежание перегрузки их током) напряжение системы будет падать, при определенных условиях даже катастрофически (так называемая лавина напряжения). Поэтому сохранение баланса реактивных мощностей в системе не менее важно, чем сохранение баланса активных мощностей.
§ 35-3. Угловые характеристики мощности синхронных машин