
- •Предисловие к первому изданию
- •Единицы измерений систем си и сгс
- •Физические свойства меди и алюминия
- •Зависимость физических свойств электротехнической стали от содержания кремния
- •Глава первая принцип действия и устройство машин постоянного тока
- •Во внешней цепи (б)
- •Мотки якОрЯ.
- •Глава вторая магнитная цепь машины постоянного тока при холостом ходе
- •Уравнительные соединения
- •Глава четвертая основные электромагнитные соотношения
- •На технико-экономические показатели машины
- •98 Машины постоянного тока [Разд. I
- •I Круговой огонь представляет собой короткое замыкание якоря машины через электрическую дугу на поверхности коллектора.
- •Взаимная индукция, форма кривой и величина реактивной
- •2) Уменьшению реактивной э. Д. С. И 3) увеличению сопротивления цепи коммутируемой секции. Добавочные полюсы.
- •Глава седьмая потери и коэффициент полезного действия электрических машин
- •Глава восьмая нагревание и охлаждение электрических машин
- •Глава десятая двигатели постоянного тока
- •1. Наиболее удобным, распространенным и экономичным является способ регулирования скорости путем изменения потока ф6, т. Е. Тока возбуждения tB.
- •Регулирование скорости включением сопротивления в цепь якоря
- •Глава одиннадцатая специальные типы машин постоянного тока
- •Глава двенадцатая основные сведения о трансформаторах
- •Виды магнитопроводов.
- •I По конструкции магнитопровода трансформаторы подраз-| деляются на стержневые и броневые.
- •Глава тринадцатая намагничивание сердечников трансформаторов
- •Глава четырнадцатая схема замещения трансформатора и ее параметры
- •I Поэтому электромагнитная связь в трансформаторах весьма высока, а рассеяние мало.
- •1) Приведенное активное сопротивление вторичной обмотки
- •1 А. И. Воль дек. О схеме замещения трансформатора и ее параметрах. «Электричество», 1952, №. 8, с. 21-25.
- •Ib связи с изложенным можно сказать, что в режиме противо-включения существуют только магнитные поля рассеяния.
- •Глава пятнадцатая работа трансформатора под нагрузкой
- •Глава шестнадцатая несимметричная нагрузка трансформаторов
- •Глава семнадцатая переходные процессы в трансформаторах
- •Глава восемнадцатая разновидности трансформаторов
- •Глава девятнадцатая основные виды машин переменного тока и их устройство
- •Основные данные трехфазных гидрогенераторов завода «Электросила»
- •Глава двадцатая электродвижущие силы обмоток переменного тока
- •Глава двадцать первая обмотки переменного тока
- •X, y, z на 180°. При таком повороте этих векторов как при нечетном, так и при чешом d получим три одинаковых сектора векторов, и каждый сектор занимает угол 60° по
- •Глава двадцать вторая намагничивающие силы обмоток переменного тока
- •Н. С. Токов нулевой последовательности
- •Глава двадцать третья магнитные поля и индуктивные сопротивления обмоток переменного тока
- •I Индуктивные сопротивления, соответствующие этим гармоникам, назовем главными.
- •1 A. Ifc Вольдек. Рассеяние по коронкам зубцов в электрических машинах. — «Вестник электропромышленности», 1961, № 1, с. 60—62.
- •Глава двадцать четвертая основы теории асинхронных машин
- •Приведение обмотки ротора к обмотке статора.
- •Уравнения напряжений неприведенной асинхронной машины.
- •Глава двадцать пятая вращающие моменты и механические характеристики асинхронной машины
- •I Пусковой момент при данных значениях параметров машины также пропорционален квадрату приложенного напряжения.
- •I Очевидно, что вид механических характеристик существенно зависит от величины вторичного активного сопротивления.
- •Кратности начального пускового момента и пускового тока.
- •Глава двадцать шестая круговая диаграмма асинхронной машины
- •Глава двадцать восьмая пуск трехфазных асинхронных двигателей и регулирование их скорости вращения
- •Общие положения.
- •Регулирование скорости вращения посредством введения добавочной э. Д. С. Во вторичную цепь двигателя.
- •Глава двадцать девятая особые виды и режимы работы многофазных асинхронных машин
- •28 Mm, 975 об/мин при соединениях обмотки статора в трегулышк"
- •Глава тридцатая однофазные асинхронные машины
- •Глава тридцать первая асинхронные микромашины автоматических устройств
- •Глава тридцать вторая магнитные поля и основные параметры синхронных машин
- •Общие положения.
- •Глава тридцать третья работа многофазных синхронных генераторов при симметричной нагрузке
- •Номинальное изменение напряжения синхронного генератора
- •Глава тридцать четвертая элементы теории переходных процессов синхронных машин
- •Периодические и апериодические токи обмоток индуктора.
- •1Ри этих условиях.
- •Затухание апериодического тока якоря.
- •Глава тридцать пятая параллельная работа синхронных машин
- •Изменение активной мощности. Режимы генератора и двигателя.
- •Вывод формулы угловой характеристики активной мощности.
- •Синхронизирующая мощность и синхронизирующий момент.
- •Глава тридцать шестая асинхронные режимы и самовозбуждение синхронных машин
- •Глава тридцать седьмая синхронные двигатели и компенсаторы
- •Способы пуска синхронных двигателей.
- •Ib подавляющем большинстве случаев применяется асинхронный пуск синхронных двигателей (см. § 36-1 и 36-2).
- •Глава тридцать восьмая несимметричные режимы работы синхронных генераторов
- •Токи и сопротивления нулевой последовательности.
- •I Последние вызывают в машине ряд нежелательных явлений и делают режим работы машины тяжелым.
- •Потери энергии и нагрев ротора.
- •Вибрация.
- •Получим
- •Глава тридцать девятая колебания и динамическая устойчивость синхронных машин
- •Глава сороковая системы возбуждения синхронных машин
- •I Регуляторы, которые реагируют не только на величины отклонения определенных параметров, но и на величины их производных во времени, называются регуляторами сильного действия.
- •Глава сорок первая специальные типы синхронных машин
- •Глава сорок вторая многофазные коллекторные машины и каскады
- •I Однако в коммутируемых секциях к. М. П. Т , кроме реактивной э. Д с, возникает также трансформаторная э. Д. С. Етр, которая индуктируется основным магнитным потоком ф.
- •Список литературы
- •Предметный указатель
Глава двадцать пятая вращающие моменты и механические характеристики асинхронной машины
§ 25-1. Электромагнитный момент
Выражение для электромагнитного момента. Электромагнитный момент, развиваемый электромагнитными силами на роторе асинхронной машины, определяется-*равенством
где РмХ — механическая мощность на роторе, определяемая выражением (2^-74), й — механическая угловая скорость вращения ротора.
Механическая угловая скорость вращения магнитного поля основной гармоники
Таким образом, на основании равенств (25-4) и (25-5)
При пользовании единицами системы СИ момент М по формуле (25-4) и (25-6) выражается в ньютон-метрах. При желании иметь М в килограмм-метрах необходимо разделить результат на 9,81 -
Согласно выражению (25-6), электромагнитный момент при любом заданном значении скольжения пропорционален квадрату приложенного напряжения и тем меньше, чем больше гг и индуктивные сопротивления рассеяния машины. В соответствии с формулой (25-4) при любом заданном s величина М пропорциональна также квадрату вторичного тока.
Исследуем зависимость М = f (s) при XJX — const.
Согласно равенству (25-6), при s>0 также М > О (режимы двигателя и противовключения)^ а при s < 0 тЗкже М <. О (режим генератора). Кроме того, при s = О также М = О, что можно установить по формуле (25-6) путем раскрытия неопределенности или пренебрегая в квадратных скобках этой формулы при s -»• 0 всеми
г' членами, кроме с-^-^-. Эти результаты были установлены уже ранее
(см. § 24-4 и 24-5) на основе физических соображений. Помимо этого, в соответствии с (25-6) при s = +оо будет М = 0. Последнее объясняется тем, что, согласно выражению (24-18), при s = сю ток /2 является чисто реактивным и поэтому не развивает вращающего момента.
Поскольку в точках s = —оо, 0 и + оо момент М = 0, то между этими точками находятся экстремумы (максимум и минимум) момента.
На основании изложенного кривая М — f (s) при U = const имеет вид, изображенный на рис. 25-1. На этом же рисунке показана кривая 1'ч = f (s), построенная по соотношению (25-5), и кривая первичного тока 1г = f (s). Все эти кривые даны в относительных единицах и соответствуют асинхронной машине мощностью Рн = = 15 кет при U± = Ula и при условии независимости параметров машины от величин токов и скольжения. Вместо s на оси абсцисс можно откладывать также скорость вращения ротора п = (1 — s)nv
Из рис. 25-1 видно, что электромагнитный момент достигает отрицательного и положительного максимумов ± Мт при некоторых скольжениях s = ±sm, которые называются критическими.
При увеличении скольжения от s = 0 до s = sm момент М растет вместе с увеличением s, а при дальнейшем увеличении скольжения момент М уменьшается, несмотря на увеличение Гг. Такой ход кривой М = f (s) объясняется тем, что с увеличением s ток /г становится по своему характеру все более индуктивным. Поэтому активная составляющая 1'%, которая определяет величину М, при увеличении s сначала растет вместе с /£, а затем начинает уменьшаться, несмотря на увеличение I't. Следует также учитывать, что с увеличе-
Рис 25-1 Кривые электромагнитного момента и токов асинхронной машины
нием /j падение напряжения в первичной цепи увеличивается, а соответственно этому э. д с. Ех и поток Ф, во взаимодействии с которым создается момент, несколько уменьшаются.
Необходимо отметить, что на статор электрической машины действует такой же вращающий момент, как и на ротор, но направленный в противоположную сторону.
Момент, действующий на статор, воспринимается деталями й узлами, крепящими машину к фундаменту.
Электромагнитный момент как результат взаимодействия пространственных волн магнитной индукции и токов. В § 22-4 пространственное распределение тока обмотки вдоль окружности якоря было представлено в виде суммы синусоидальных пространственных волн тока разных гармоник.
Возникновение в электрической машине электромагнитных сил и вращающих моментов можно рассматривать как результат взаимодействия указанных волн тока с синусоидальными же волнами распределения индукции магнитного поля вдоль окружности якоря. Отличный от нуля вращающий момент
создается взаимодействием пространственных гармоник тока и магнитного поля одинакового порядка, а гармоники разных порядков создают вдоль окружности якоря знакопеременные электромагнитные силы и составлящие момента, суммарная величина которых равна нулю.
На рис. 25-2, а показана кривая индукции основной гармоники результирующего магнитного поля в зазоре асинхронной машины
Рис. 25-2. Образование вращающего момента как результат взаимодействия пространственных волн магнитной индукции и тока
Подставив значения этих величин в (25-10), получим выражение для М в другой форме:
На основании выражения (25-11) момент пропорционален потоку машины и активной составляющей тока /^ или /2, что вполне согласуется с основными физическими представлениями об электромагнитных силах и находится в соответствии с изложенным выше.
Согласно выражениям (24-6) и (24-18),
При подстановке этих величин в (25-11) получим соотношение (25-4). Отсюда следует вывод, что выражения (25-4) и (25-11) вполне равноценны.
Максимальный электромагнитный момент. Выражение для электромагнитного момента (25-6) верно в общем случае, т. е. также тогда, когда параметры гъ ха1, г'%, х'а2 не постоянны и зависят от величин токов и скольжения. В этом случае при каждом значении s в выражение (25-6) нужно подставлять соответствующие значения указанных параметров. Ограничимся здесь рассмотрением машины с постоянными параметрами и исследуем зависимость М = f (s) по формуле (25-6) при Ux = const и /2 = const на максимум и минимум.
Вместо s удобнее рассматривать переменную величину
Взяв от (25-13) производную по у и приравняв ее нулю, получим уравнение для определения значений у = ут, при которых М имеет экстремумы:
В этих соотношениях знаки плюс относятся к двигательному, а знаки минус — к генераторному режиму работы.
Для нормальных асинхронных машин члены с гх в выражениях (25-17) и (25-19) малы по сравнению с остальными. Полагая поэтому гх = 0, имеем
Полученные соотношения позволяют сделать вывод, что величина максимального момента, во-первых, не зависит, согласно выражениям (25-19) и (25-21), от величины активного сопротивления вторичной цепи, во-вторых, пропорциональна квадрату напряжения, в-третьих, с большой точностью обратно пропорциональна индуктивным сопротивлениям рассеяния и, в-четвертых, в генераторном режиме несколько больше, чем в двигательном. Так как иг ^ ДФ, то из выражения (25-21) можно сделать также вывод, что максимальный момент пропорционален квадрату магнитного потока машины. Весьма важно подчеркнуть, что, хотя момент Мт не зависит от вторичного активного сопротивления, величина скольжения sm, при котором наблюдается этот момент, согласно выражениям (25-17) и (25-20), пропорциональна этому сопротивлению.
У асинхронных двигателей нормального исполнения кратность максимального момента при номинальном напряжении
и sm = 0,06 -f- 0,15. Более высокие km имеют двигатели с малым числом полюсов.
Применим соотношение (25-4) для номинального режима работы (индекс «н») и для режима с максимальным моментом (индекс т).
Обычно у асинхронных двигателей это отношение находится в пределах 2,5—3,5.
В качестве иллюстрации к изложенному на рис. 25-3 представлены кривые М = / (s) для разных значений rjj в двигательном режиме работы той же асинхронной машины мощностью 15 кет, как и на рис. 25-1. Отметим, что величина г\ включает в себя как активное сопротивление самой вторичной обмотки, так и сопротивление реостата, который может быть включен во вторичную цепь машины с фазным ротором. Кривая / на рис. 25-3 соответствует нормальному значению г!г вторичной обмотки, а остальные кривые — повышенным значениям г\ или случаю включения реостата во вторичную цепь.
Величина электромагнитного момента по отношению к его максимальному значению. Для отношения этих моментов для машины с постоянными параметрами может быть получено простое выражение, удобное для некоторых практических расчетов.
Из уравнения (25-16) находим
При sm — 0,15 ч- 0,30 ошибка в определении М1Мт по приближенной формуле (25-25) составляет около 10—17%.
Формула (25-25) впервые была выведена М. Клоссом. В связи с этим формулы (25-23) и (25-25) называются формулами Клосса.
Формула (25-25) позволяет определить Мт и sm и построить кривую М — f (s) для двигателя с постоянными параметрами, если известны М и s для каких-либо двух режимов работы, например для номинального (УИН, sH) и пускового (Мш, sH = 1). Более точная кривая М = f(s) может быть построена по уравнению (25-23), если известно также значение а по формуле (25-24). Приближенно можно принять а = 2.
Начальный пусковой электромагнитный момент Мп соответствует значению электромагнитного момента в начальный момент пуска двигателя, т. е. при s = 1. Согласно выражению (25-6),