
- •Предисловие к первому изданию
- •Единицы измерений систем си и сгс
- •Физические свойства меди и алюминия
- •Зависимость физических свойств электротехнической стали от содержания кремния
- •Глава первая принцип действия и устройство машин постоянного тока
- •Во внешней цепи (б)
- •Мотки якОрЯ.
- •Глава вторая магнитная цепь машины постоянного тока при холостом ходе
- •Уравнительные соединения
- •Глава четвертая основные электромагнитные соотношения
- •На технико-экономические показатели машины
- •98 Машины постоянного тока [Разд. I
- •I Круговой огонь представляет собой короткое замыкание якоря машины через электрическую дугу на поверхности коллектора.
- •Взаимная индукция, форма кривой и величина реактивной
- •2) Уменьшению реактивной э. Д. С. И 3) увеличению сопротивления цепи коммутируемой секции. Добавочные полюсы.
- •Глава седьмая потери и коэффициент полезного действия электрических машин
- •Глава восьмая нагревание и охлаждение электрических машин
- •Глава десятая двигатели постоянного тока
- •1. Наиболее удобным, распространенным и экономичным является способ регулирования скорости путем изменения потока ф6, т. Е. Тока возбуждения tB.
- •Регулирование скорости включением сопротивления в цепь якоря
- •Глава одиннадцатая специальные типы машин постоянного тока
- •Глава двенадцатая основные сведения о трансформаторах
- •Виды магнитопроводов.
- •I По конструкции магнитопровода трансформаторы подраз-| деляются на стержневые и броневые.
- •Глава тринадцатая намагничивание сердечников трансформаторов
- •Глава четырнадцатая схема замещения трансформатора и ее параметры
- •I Поэтому электромагнитная связь в трансформаторах весьма высока, а рассеяние мало.
- •1) Приведенное активное сопротивление вторичной обмотки
- •1 А. И. Воль дек. О схеме замещения трансформатора и ее параметрах. «Электричество», 1952, №. 8, с. 21-25.
- •Ib связи с изложенным можно сказать, что в режиме противо-включения существуют только магнитные поля рассеяния.
- •Глава пятнадцатая работа трансформатора под нагрузкой
- •Глава шестнадцатая несимметричная нагрузка трансформаторов
- •Глава семнадцатая переходные процессы в трансформаторах
- •Глава восемнадцатая разновидности трансформаторов
- •Глава девятнадцатая основные виды машин переменного тока и их устройство
- •Основные данные трехфазных гидрогенераторов завода «Электросила»
- •Глава двадцатая электродвижущие силы обмоток переменного тока
- •Глава двадцать первая обмотки переменного тока
- •X, y, z на 180°. При таком повороте этих векторов как при нечетном, так и при чешом d получим три одинаковых сектора векторов, и каждый сектор занимает угол 60° по
- •Глава двадцать вторая намагничивающие силы обмоток переменного тока
- •Н. С. Токов нулевой последовательности
- •Глава двадцать третья магнитные поля и индуктивные сопротивления обмоток переменного тока
- •I Индуктивные сопротивления, соответствующие этим гармоникам, назовем главными.
- •1 A. Ifc Вольдек. Рассеяние по коронкам зубцов в электрических машинах. — «Вестник электропромышленности», 1961, № 1, с. 60—62.
- •Глава двадцать четвертая основы теории асинхронных машин
- •Приведение обмотки ротора к обмотке статора.
- •Уравнения напряжений неприведенной асинхронной машины.
- •Глава двадцать пятая вращающие моменты и механические характеристики асинхронной машины
- •I Пусковой момент при данных значениях параметров машины также пропорционален квадрату приложенного напряжения.
- •I Очевидно, что вид механических характеристик существенно зависит от величины вторичного активного сопротивления.
- •Кратности начального пускового момента и пускового тока.
- •Глава двадцать шестая круговая диаграмма асинхронной машины
- •Глава двадцать восьмая пуск трехфазных асинхронных двигателей и регулирование их скорости вращения
- •Общие положения.
- •Регулирование скорости вращения посредством введения добавочной э. Д. С. Во вторичную цепь двигателя.
- •Глава двадцать девятая особые виды и режимы работы многофазных асинхронных машин
- •28 Mm, 975 об/мин при соединениях обмотки статора в трегулышк"
- •Глава тридцатая однофазные асинхронные машины
- •Глава тридцать первая асинхронные микромашины автоматических устройств
- •Глава тридцать вторая магнитные поля и основные параметры синхронных машин
- •Общие положения.
- •Глава тридцать третья работа многофазных синхронных генераторов при симметричной нагрузке
- •Номинальное изменение напряжения синхронного генератора
- •Глава тридцать четвертая элементы теории переходных процессов синхронных машин
- •Периодические и апериодические токи обмоток индуктора.
- •1Ри этих условиях.
- •Затухание апериодического тока якоря.
- •Глава тридцать пятая параллельная работа синхронных машин
- •Изменение активной мощности. Режимы генератора и двигателя.
- •Вывод формулы угловой характеристики активной мощности.
- •Синхронизирующая мощность и синхронизирующий момент.
- •Глава тридцать шестая асинхронные режимы и самовозбуждение синхронных машин
- •Глава тридцать седьмая синхронные двигатели и компенсаторы
- •Способы пуска синхронных двигателей.
- •Ib подавляющем большинстве случаев применяется асинхронный пуск синхронных двигателей (см. § 36-1 и 36-2).
- •Глава тридцать восьмая несимметричные режимы работы синхронных генераторов
- •Токи и сопротивления нулевой последовательности.
- •I Последние вызывают в машине ряд нежелательных явлений и делают режим работы машины тяжелым.
- •Потери энергии и нагрев ротора.
- •Вибрация.
- •Получим
- •Глава тридцать девятая колебания и динамическая устойчивость синхронных машин
- •Глава сороковая системы возбуждения синхронных машин
- •I Регуляторы, которые реагируют не только на величины отклонения определенных параметров, но и на величины их производных во времени, называются регуляторами сильного действия.
- •Глава сорок первая специальные типы синхронных машин
- •Глава сорок вторая многофазные коллекторные машины и каскады
- •I Однако в коммутируемых секциях к. М. П. Т , кроме реактивной э. Д с, возникает также трансформаторная э. Д. С. Етр, которая индуктируется основным магнитным потоком ф.
- •Список литературы
- •Предметный указатель
I Индуктивные сопротивления, соответствующие этим гармоникам, назовем главными.
Определим величины главных индуктивных сопротивлений, опуская при этом индексы, указывающие на порядок гармоники. Величины, относящиеся к статору и ротору, обозначим соответственно индексами 1 и 2.
Выражения для главных индуктивных сопротивлений. Э. д. с. самоиндукции Ег, индуктируемую в обмотке статора потоком основной гармоники Ф1; найдем, если подставим в (20-19) значение потока Ф = Фх из (23-7), полагая при этом v = 1 и обозначая величины, относящиеся к статору, индексами 1. Тогда получим
Главное собственное индуктивное сопротивление обмотки статора, согласно выражениям (23-8) и (23-9),
Далее будем полагать /2 = flt что в асинхронной машине соответствует неподвижному ротору. В противном случае в соответствующих выражениях достаточно заменить f1 на /2. Тогда аналогичным образом для главного собственного индуктивного сопротивления обмотки ротора получим
Э. д. с. взаимной индукции £12, индуктируемую основной гармоникой поля статора в обмотке ротора, найдем аналогично Ех по (23-9), если в (20-19) будем писать индексы ротора 2, а в (23-7) — индексы статора 1. Э. д. с. взаимной индукции Е2ъ индуктируемую основной гармоникой поля ротора в обмотке статора, определим подобным же образом, однако в (20-19) нужно писать индексы статора, а в (23-7) — индексы ротора. При этом
460 Общие вопросы теории машин переменного тока [Разд. Ill
и для главных взаимных индуктивных сопротивлений получим выражения:
По выражениям (23-17) и (23-18) дгг12 ф хг21, что объясняется тем, что эти сопротивления являются эквивалентными и учитывают действие поля всех фаз одной обмотки на другую. Например, xTt2 учитывает э. д. с, индуктированную полем всех tnx фаз первичной обмотки в фазе вторичной обмотки. В выражения (23-17) и (23-18) введены коэффициенты скоса kc для основной гармоники поля [см. равенство (20-3)1, так как при наличии скоса пазов на одной из частей машины магнитное поле другой части машины будет скошено относительно проводников первой части машины, что вызовет уменьшение индуктированной э. д. с. В то же время в соотношения (23-10), (23-11), (23-13) й (23-14) этот коэффициент не входит, так как поле данной обмотки ориентировано всегда в направлении ее пазов и проводников. При отсутствии скоса в формулах (23-17) и (23-18), естественно, надо положить &с = 1.
Как и всякие индуктивные сопротивления, xtl, хп, хгП и а:г21: пропорциональны частоте тока и квадрату чисел витков или произведению чисел витков двух обмоток, а также обратно пропорциональны величине эквивалентного воздушного зазора.
При пользовании полученными выражениями необходимо подставлять такое значение k^, которое соответствует насыщению машины в рассматриваемом режиме работы.
Относительная величина главного собственного индуктивного сопротивления. Номинальное сопротивление zH выражается через номинальные фазные напряжения и ток:
Пусть Вьн означает амплитуду индукции основной гармоники поля воздушного зазора при условии, что основная гармоника э. д. с, обмотки статора Et = Us. Тогда на основании выражений (20-19) и (23-6) при v = 1
Полагая в равенстве (22-33) А = Ая и / = /н, выразим с помощью этого равенства номинальный ток статора /и через номинальную линейную нагрузку статора Ав:
Так как величины Ап и Ва„ определяются главным образбм условиями охлаждения и качеством магнитных материалов, то в машинах данной конструкции они изменяются в сравнительно узких пределах. Поэтому величина дгг1* зависит главным образом от отношения т/б. Для машины заданной мощности и скорости вращения хкЫ зависит в основном от величины зазора б. В синхронных машинах относительная величина зазора всегда больше, чем в асинхронных, и поэтому у первых хг1* всегда меньше, чем у вторых.
Из выражения (23-23) следует также, что в крупных турбогенераторах с внутренним охлаждением проводников обмоток, у которых Лн достигает весьма больших значений, для ограничения величины л:г1* нужно существенным образом увеличивать б.
В практике заводских расчетов относительные значения сопротивлений иногда выражают через величины потока Фн при Е = (/„ и н. с. якоря FH при / = /н. Такие выражения нетрудно получить, используя соотношения (20-9), (20-19) и (22-31), Для хт1% вместо (23-23) при этом получим
§ 23-3. Индуктивные сопротивления рассеяния обмоток переменного тока
Краткая характеристика полей рассеяния была дана в § 23-1. Произведем здесь расчет индуктивных сопротивлений рассеяния. Пазовое рассеяние. Рассмотрим паз простейшей конфигурации с одной катушечной стороной в пазу (рис. 23-4) и предположим дли простоты, что линии магнитной индукции поля рассеяния паза пересекают паз прямолинейно, перпендикулярно его боковым стенкам. Такое предположение не слишком сильно отличается от действительности (см. рис. 23-1), и необходимые коррективы могут быть внесены отдельно. Вычислим потокосцепление проводников паза (wK) с потоком, создаваемым током катушки iK.
В нижней части паза высотой hlt занятой катушкой (зона /), линия магнитной индукции Вх1 на высоте х создается током
Z- wKiK и сцепляется с числом витков Д- wK. «1 "1
Полагая для стали цс = оо по закону
полного тока имеем
Рис. 23-4. Поле рассеяния паза
В верхней части паза высотой h2 (зона 2) индукция Bxi определяется полным током паза:
Можно принять приближенно, что поле рассеяния катушек в радиальных вентиляционных каналах в два раза слабее, чем в пазах. При этом расчетная длина поля рассеяния
где пвент и Ьвент — число и ширина вентиляционных каналов: 1С — полная длина сердечника вместе с вентиляционными каналами. Сечения элементарных трубок магнитного потока высотой dx (рис. 23-4) составляют 1'6 dx. Потоки этих трубок
называется относительной магнитной проводимостью рассеяния паза и определяет потокосцепление рассеяния паза на единицу длины машины.
Параллельная ветвь однослойной обмотки имеет 2pq/a катушечных сторон и число витков, равное
Равенство (23-33) пригодно также для двухслойных обмоток и для пазов иной формы. Выражения для КП при других формах пазов находятся аналогично, при тех же предположениях о характере поля рассеяния паза. В двухслойных обмотках с укороченным шагом в части пазов находятся катушечные стороны разных фаз, и поля рассеяния этих пазов будут слабее. При этом в выражение для %а войдет также относительная величина шага. Формулы для Ка при различных формах пазов, также с учетом укорочения шага приводятся в руководствах по проектированию электрических машин,
Из выражения (23-30) следует, что пазовое рассеяние тем больше, чем выше и уже пазы. Обычно ка =1,0-5- 4,0.
Рассеяние по коронкам зубцов. Принятое выше допущение о виде магнитных линий рассеяния паза заметно нарушается вблизи воздушного зазора (см. рис. 23-1). Вследствие этого при больших значениях ЫЬ (см. рис. 23-1, а) в связи с ослаблением поля паза вблизи зазора рассеяние уменьшается. При малых ЫЬ (см. рис. 23-1, 6) необходимо учесть магнитные линии, замыкающиеся вокруг паза от одного зубца к другому, но не доходящие до противоположной стороны зазора, и в результате рассеяние увеличивается. Эффект изменения рассеяния паза вследствие указанных явлений учтем в виде добавочной составляющей рассеяния, которую назовем рассеянием по коронкам зубцов. Для индуктивного сопротивления рассеяния по коронкам зубцов хк можно получить формулу вида (23-33), с заменой Х„ на магнитную проводимость рассеяния по коронкам зубцов %к. Формулу для Кк можно вывести, используя для анализа поля в рассматриваемой области соотношения, получаемые методом конформных отображений. Формула для %к приобретает вид1
где b — величина открытия паза.
Зависимость Кк = / (6/6) приведена на рис. 23-5. При больших воздушных зазорах рассеяние по коронкам зубцов составляет